+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Хромосомная организация геномов растений с хромосомами малых размеров или малоинформативным рисунком дифференциального окрашивания

Хромосомная организация геномов растений с хромосомами малых размеров или малоинформативным рисунком дифференциального окрашивания
  • Автор:

    Муравенко, Ольга Викторовна

  • Шифр специальности:

    03.01.03, 03.02.07

  • Научная степень:

    Докторская

  • Год защиты:

    2010

  • Место защиты:

    Москва

  • Количество страниц:

    52 с. : ил.; 19х14 см

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1. Разработка комплекса методов, повышающих разрешающую способность анализа хромосомной организации геномов растений с хромосомами малых размеров или малоинформативным рисунком С-бэндинга на модельных объектах (человек, ячмень, пшеница) и объектах исследования (ромашка, лен, горох). 
1. Разработка комплекса методов, повышающих разрешающую способность анализа хромосомной организации геномов растений с хромосомами малых размеров или малоинформативным рисунком С-бэндинга на модельных объектах (человек, ячмень, пшеница) и объектах исследования (ромашка, лен, горох).

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Актуальность проблемы.


Цитогенетика растений менее чем за столетие прошла путь от описания числа и морфологии хромосом в геноме и кариотипе вида (в понимании Г. Винклера, Л.Н. Делоне и Г.А. Левитского) до молекулярного кариотипирования (идентификации хромосом с помощью физического картирования на них различных ДНК-зондов методами флуоресцентной гибридизации in situ). Важнейшим этапом в развитии цитогенетики растений стало внедрение в 70-е годы прошлого столетия в широкую практику Т. Касперсоном, К. Воза и другими учеными методов диффренциального окрашивания хромосом (бэндинга). Метод С-бэндинга, основанный на выявлении участков конститутивного гетерохроматина, на долгие годы занял ведущее место в исследованиях хромосом растений, что связано с чрезвычайной обогащенностью их геномов повторяющимися последовательностями ДНК. В 70-80-х г.г. прошлого века были изучены рисунки С-бэндинга хромосом у многих видов возделываемых и дикорастущих растений. Следующий этап в развитии цитогенетики растений, приведший к серьезному расширению ее возможностей, связан с разработкой и началом широкого использования в 80-90-х годах прошлого столетия флуоресцентной гибридизации in situ (FISH). В качестве маркерных ДНК-зондов начали применять участки генов рибосомных РНК и другие ДНК-последовательности. В результате за прошедшие десятилетия был накоплен огромный багаж знаний, касающихся особенностей хромосомной организации геномов растений, получены важнейшие сведения об их изменчивости, происхождении и эволюции, что послужило базисом для разработки цитогенетических основ селекции. Стал возможен многопараметрический сравнительный анализ кариотипов в природных популяциях, а также у сортов и линий культурных растений и их гибридов. Цитогенетический мониторинг селекционных образцов, исследование селекционной истории и контроль чистоты сортов прочно вошли в практику селекции. В это же время возник широкий спектр методов молекулярного анализа генома, который внедрился в генетические исследования многих культурных видов растений и их дикорастущих сородичей, а также в селекционную практику. Объединение цитогенетического и молекулярного подходов открыло новые перспективы для изучения геномов растений. В частности, физическое картирование последовательностей ДНК на хромосомах является необходимым этапом при тотальном секвенировании крупных эукариотических геномов.
Однако большинство из перечисленных выше исследований были выполнены на объектах, метафазные хромосомы которых имеют размеры не менее 5 мкм (большинство злаков, лилейные, многие бобовые). Это связано с тем, что изучение рисунка дифференциального окрашивания небольших хромосом (длиной 1-4 мкм) часто представляет значительные трудности вследствие недостаточной разрешающей способности светоопшческого

микроскопа. Кроме того, геномы мелкохромосомных растений, как правило, имеют небольшие размеры (на один-два порядка меньше, чем геномы злаков или лилейных) и содержат сравнительно мало повторяющихся последовательностей ДНК различных классов, а, следовательно, и конститутивного гетерохроматина. Это обуславливает бедность рисунков С-бэндинга мелких хромосом, что еще в большей степени затрудняет их распознавание. В связи с этим, для изучения кариотипов растений, имеющих небольшие хромосомы, возникла необходимость разработки новых подходов, повышающих разрешение методов хромосомного анализа, а также поиск дополнительных хромосомных маркеров. Важность решения этой задачи связана с тем, что кариотипы значительного числа хозяйственно-ценных культур: технических, масличных, овощных и т.п. представлены
хромосомами малых размеров. Для большинства таких растений задача соотнесения молекулярной, генетической и цитологической классификаций хромосом остается весьма актуальной. Особое место среди таких растений занимает лен - культура, имеющая для нашей страныПте только большое-хозяйственное, но и стратегическое значение. Именно поэтому исследование хромосомной организации генома этого ценного растения и его дикорастущих сородичей представляет собой задачу первостепенной важности.

Цель работы.


Разработка новых и усовершенствование существующих методов молекулярно-цитогенетического исследования для повышения разрешающей способности анализа геномов растений с хромосомами малых размеров или малоинформативным рисунком дифференциального окрашивания. Изучение кариотипов таких растений (низших и высших) о целью идентификации индивидуальных хромосом, выявления структурных перестроек, изучения внутривидового хромосомного полиморфизма, а также сравнения геномов родственных видов для уточнения их таксономического статуса и филогенетических взаимосвязей.

Основные задачи исследования:


1. Разработка комплекса методов, повышающих разрешающую способность анализа хромосомной организации геномов растений с хромосомами малых размеров или малоинформативным рисунком С-бэндинга на модельных объектах (человек, ячмень, пшеница) и объектах исследования (ромашка, лен, горох).
2. Поиск дополнительных молекулярных и цитогенетических маркеров для ?:[8Н-картирования хромосом и геномов растений с хромосомами малых размеров или малоинформативным рисунком С-бэндинга:
• применение универсальных маркеров - генов рибосомных РНК и
теломерной последовательности ДНК,
• маркеры из тотальной геномной ДНК,

(ядрышкообразующей) хромосоме различаются по центромерному индексу, положению вторичных перетяжек и рисунку С-окрашивания.
Установлено, что две пары хромосом из четырех в кариотипе Z pisidica имеют значительное сходство с хромосомами Z. biebersteiniana. Однако, в отличие от Z. biebersteiniana, хромосомы Z. pisidica не содержат крупных прицентромерных С-блоков. Две другие хромосомы по рисункам С-окраски сходны с хромосомами С. versicolor. Однако размеры отдельных интеркалярных С-блоков у Z. pisidica значительно крупнее, чем таковые в хромосомах С. versicolor (Рис. 25). По-видимому, один из субгеномов Z. pisidica и геном Z biebersteiniana имеют общее происхождение. Не исключено, что предковый геном С. versicolor принимал участие в формировании другого субгенома Z. pisidica.
У исследованных видов проведена хромосомная локализация генов 45S и 5S рРНК. Рисунки расположения генов 45S и 5S рРНК на хромосомах двух видов цингерий и у С. versicolor подтверждают предположение, что Z. pisidica является аллотетраплоидом, у которого один из субгеномов сходен с геномом Z. biebersteiniana (Рис. 24). Сравнение кариотипов Catabrosella variegata и описанных выше видов злаков не выявило черт сходства между ними.
Проведено сравнение последовательностей внутренних транскрибируемых спейсеров ITS1 и ITS2 генов 45S рРНК в геномах изученных видов. Обнаружено, что геномы уникальных двухромосомных злаков (х = 2) - Z. biebersteiniana (2п = 4), Z. pisidica (2п = 2х = 8) и Colpodium versicolor (2n = 4), относимые ранее к разным трибам или подтрибам, представляют два близких рода, генетическое расстояние (p-distance) между ITS которых составляет всего 1,2-4.4%. На молекулярно-филогенетическом древе виды Zingeria и Colpodium versicolor образуют единую кладу с Catabrosella araratica (2n = 42, х = 7).
Таким образом, установлено, что геномы Zingeria и Colpodium с наиболее низким из известных основным числом хромосом (х = 2) возникли не в разных филогенетических ветвях, а имеют монофилетическое происхождение.
2.6. Изучение геномов у видов рода Linum L.
Для определения родственных взаимоотношений и уточнения таксономического статуса, а также выявления филогенетических взаимосвязей видов рода Linum L. проведено изучение геномов возделываемого Linum nsitatissimum L. и 25 дикорастущих видов из 6 секций [Юзепчук, 1949; Егорова, 1996], в основном произрастающих в Евразии.
2.6.1. Идентификация хромосом, геномы и кариотипы видов льна.
Род Linum — лен включает около 200 видов, которые разделяют на 5-9 секций [Юзепчук, 1949; Ockendon, Walters, 1968; Егорова, 1996]. Кариологическое изучение видов льна начато более полувека назад, и почти у 30 видов Нового и 50 видов Старого Света были определены хромосомные числа. Показано, что в кариотипах льновых число хромосом варьирует от

Рекомендуемые диссертации данного раздела

Время генерации: 0.296, запросов: 967