+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Распространение электромагнитных волн в областях, содержащих угловые точки

  • Автор:

    Лобанов, Владимир Николаевич

  • Шифр специальности:

    01.04.03

  • Научная степень:

    Кандидатская

  • Год защиты:

    2006

  • Место защиты:

    Санкт-Петербург

  • Количество страниц:

    115 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы

Настоящая работа посвящена исследованию полуаналитических методов решения задач распространения электромагнитных волн при наличии в области распространения угловых точек разного типа. Необходимость отдельного рассмотрения таких задач обусловлена, во-первых, распространенностью подобных конфигураций (действительно, в большинстве теоретических и практических задач область, в которой распространяются электромагнитные волны, содержит в себе углы, ребра, изломы и т.п.), а во-вторых, специфичностью проблем, возникающих при их решении. Таким образом, методы решения таких задач в некотором смысле кардинально отличаются от прочих задач распространения.
Первые работы, в которых сингулярные задачи были рассмотрены как отдельно стоящий класс задач дифракции, начали появляться в 60-70х годах [1, 2, 3]. В дальнейшем, в связи с возросшей необходимостью решения практических задач, к этому направлению обратились многие авторы [4-7]. В настоящее время накопилось довольно большое число различных методов, позволяющих эффективно решать задачи дифракции для тех или иных конфигураций области распространения. Однако порой довольно сложно определить, какой метод (или даже какой класс методов) лучше всего подходит для исследования конкретной системы. Чтобы понять это, надо быть хорошо знакомым с различными методами, видеть их связь между собой, их сходства и различия. Многие, весьма далекие друг от друга методы, используют одну и ту же идею, и наоборот -похожие по построению решения методы имеют совершенно разные теоретические основания. Можно сказать, что назрела необходимость подробной и четкой классификации сингулярных задач, с указанием и обоснованием того, как надо искать решение для определенной области (класса областей) распространения. Данная работа посвящена именно
исследованию методов решения сингулярных задач, их связи между собой, достоинств и недостатков.
Подавляющее большинство методов решения сингулярных задач так или иначе связаны с методом частичных областей (МЧО) заключается в сшивании тангенциальных компонент полей на границах
частичных областей с углами (на которые разбивается исходная область),
с последующим проектированием полученных функциональных
уравнений на некоторое полное пространство функций и переходом к
бесконечным системам линейных алгебраических уравнений. Дальнейшие
действия связаны с редукцией полученных линейных систем и их
решением (численным или аналитическим). Основная проблема,
связанная с сингулярностью - нерегулярность полученной бесконечной
системы: ее матричный оператор не является ограниченным в 12, и

корректное усечение невозможно.
Из вышесказанного следует, что эффективный метод решения должен учитывать особенность поля вблизи ребра. Часто используются различные методы обращения сингулярной части оператора - например, метод обращения разностной части матричного оператора [8], метод полуобращения [9], а также метод квазистатической функции Грина [10]. В некоторых методах используется знание поведения функции вблизи сингулярной точки - это метод прямого усечения и метод вычетов [2]. Довольно редко, но порой чрезвычайно эффективно возможно строгое решение сингулярной системы, что позволяет избежать трудностей, связанных с невозможностью ее усечения. К таким методам можно отнести метод задачи Римана-Гильберта[4].
Кроме вышеприведенной классификации, методы также можно условно поделить на численные, полуаналитические и аналитические. Критерии такого разделения очевидны: чем больше параметров задачи входят в конечную формулу в аналитическом виде, тем ближе

Разлагая экспоненту е
в ряд Тейлора, получаем:

где ?9‘5+ - сумма коэффициентов при экспонентах с одним и тем же показателем, причем индекс «1» соответствует номеру области(0,), а «+»
- знаку показателя экспоненты еа . Используемые в дальнейшем Р** определяются аналогично для области 02.
При небольших я р£ имеют простой вид, с ростом я их вид усложняется:

Рекомендуемые диссертации данного раздела

Время генерации: 0.122, запросов: 967