+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск
Почти омега-стабильные теории
  • Автор:

    Нурмагамбетов, Турсынбек Актасович

  • Шифр специальности:

    01.01.06

  • Научная степень:

    Кандидатская

  • Год защиты:

    1984

  • Место защиты:

    Караганда

  • Количество страниц:

    122 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
§2, Терминология и необходимые сведения 
Глава II. ВПОЛНЕ НОРМАЛЬНЫЕ РАНГОВЫЕ ФУНКЦИИ

Глава I. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

§1. Введение

§2, Терминология и необходимые сведения

Глава II. ВПОЛНЕ НОРМАЛЬНЫЕ РАНГОВЫЕ ФУНКЦИИ

И ПОЧТИ О) -СТАБИЛЬНЫЕ ТЕОРИЙ

§1. Почти СО -стабильные теории и ранговая


функция

§2. Связь почти СО -стабильности теории с СО -стабильностью и суперстабильностью.

Примеры почти СО -стабильных теорий

§3. Вполне нормальные ранговые функции и

максимальные типы в стабильных теориях


§А. Топологический способ задания ранговых
функций
Глава III. ПОЧТИ СО -СТАБИЛЬНЫЕ ТЕОРИИ ОГРАНИЧЕННОЙ РАЗМЕРНОСТИ
§1. Локально регулярные типы и структура
X -насыщенных моделей
§2. Размерность локально регулярных типов
в X -насыщенных моделях
§3. Почти СО -стабильные теории ограниченной размерности
§А. Взаимная злементарная вложимость
ЛИТЕРАТУР А
ГЛАВА I. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ.
§1. Введение.
Теория моделей - раздел математической логики, изучающей связи между формальным языком и алгебраическими системами. Создатели теории моделей - А,И.Мальцев и А.Тарский. В последние десятилетия эта теория интенсивно развивается в разных направлениях. Тема данной диссертации относится к одному из её актуальных направлений теории стабильности.
Это направление берёт свое начало от известной теоремы Морли [32], доказавшего гипотезу Лося: если счётная теория категорична в некоторой несчетной мощности, то она категорична во всех несчетных мощностях.
Идеи и методы, которые были использованы в доказательстве этой теоремы, стали более важными чем сама теорема. Одним из этих методов является понятие ранга Морли. Каждому типу р вполне определенным образом ставится в соответствие некоторый ординал • называемый рангом типа р . Это соответствие дает
полезную характеристику сложности таких объектов как типы, формулы, теории и, в частности, позволяет доказывать некоторые утверждения об этих объектах индукцией по ординалам. Если каждый тип р имеет определенный ранг (^(р) » то такие теории Морли называет тотально трансцендентными. Для каждой модели [Ж) полных типов с константами изЛА, , совместных с теорией | . Важным результатом оказался критерий тотальной трансцендентности теории в терминах мощностей отоуновских пространств. Морли £32]доказал эквивалентность следующих условий: (а) теорияТ"* тотально трансцен-дентна: (б) для любой модели (еМ) этой модели также имеет мощность СО •
Если в условии (б) кардинал сд заменить на произвольный кардинал X , то мы получаем определение X -стабильности теории [36]. Используя это понятие, Шелах[36] предложил следующую классификацию полных теорий: СО -стабильные, суперстабильные, стабильные и нестабильные теории.
В 1966 году Марш[31] ввел понятие сильно минимальной формулы,которое оказалось очень полезным особенно при изучении -категоричных теорий. Используя его Балдуин и Лахлан[22] получили ряд замечательных теорем относительно СО^-категоричных теорий.
Вопрос категоричности является частным случаем вопроса о спектре теорий. Под спектром теорииТ* понимается функциятакая, что!эг(Х) это число неизоморфных моделей теории Т" мощности] для любого кардинала А
Белеградек[7] в 1973 году с помощью сильно минимальных формул определил новый класс - класс почти категоричных теорий.Зта работа содержит структурные результаты о моделях почти категоричных теорий, на основе которых исследуется их спектр.
В 1973 году Лахлан[25] показал, что счетная суперстабильная не со -категоричная теория имеет бесконечной число неизоморфных счетных моделей.
Гипотеза Лося для теорий произвольной мощности была доказана Шелахом[37] в 1974 году. К этому же времени относится его другая теорема[38]: еслиП"1 не суперстабильная теория,то £,.Ш
-X Для вс®х Л »|Т I +ш±.
Одновременно вопросы категоричности и спектра успешно развивались для классов алгебраических систем, обладающих классическими свойствами замкнутости. В 1972 году Палютин[12] доказал, что из счётной категоричности квазимногообразия следует его несчётная категоричность, а в 1975 году им же было дано полное описа-

Теперь мы можем завершить доказательство теоремы П. 3.2.
Доказательство (а) 5> (б). Пусть с/И- насыщенная модель
мощности~уф/Ь 1 +1) »содержащая^ . По лемме 1.2.3 существует типр^є В[сМ) , являющийся максимальным расширением типа р • Обозначим через р0 . В силу вполне нормальности ранговой
функции существует тип р^єІзІсМ) * удовлетворяющий условиям р0с р^ и КірО -&(£,)= об .По лемме П.3.3 тип р^ максимален надй/Ь . Пусть с4_? сі^ схемы над Л , определяющие соответственно типы ро., рд, . Используя лемму П.3.14, найдем элементарное отображение ^ ,тождественное на множестве сИ такое, что
їЯу4Л)^(Іс пУСть сЖ" /ДД). Ръ = У/РО » = . Рассмотрим произвольную модель Л', содержащую Л-о Л . Ясно, что = Дб'О'г-к* • Из равенств )=&=<,(/) и из
вполне нормальности & имеем
Таким образом Я(рх) — сб . Так как о£ = ЦСрі)
то £ Ср) - ^(р/с^) • Теорема П.3.2 доказана,
Доказанная выше теорема имеет интересные следствия.
Пусть (^° -ранговая функция Морли из[32], из параграфа ПД этой работы, ^-ранговая функция Шелаха^еЯ' из [36],
рЗ о
К/ -ранговая функция Лахлана[25]. Заметим,что вое эти ранговые функции являются вполне нормальными.
Если р є Б (Л), , 1£ср) «/о^^то обозначим через
Е(Я,р,<^) обозначим : р сг р и
ОПРЕДЕЛЕНИЕ П.З.І5. Теория Л'’ называется ~р а н -
гованной, если Перу •< °° для всех СІ,рЄ 2(сУЬ)
СЛЕДСТВИЕ П.3.16. Пусть і и теорияТ7 (&-рангована. Для любыхс^с:^, следующие условия эквивалентны:
(а) тип Ь максимален над »
(б) Исср) ^ ИЧр/м.

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Гиперболические многогранники Кокстера Тумаркин, Павел Викторович 2003
Орбиты и инварианты пучков квадратных матриц Первушин, Дмитрий Довидович 2002
Усредненная функция Дена и спектр Райдемайстера свободных абелевых и близких к ним групп Кукина, Екатерина Георгиевна 2009
Время генерации: 0.095, запросов: 967