+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

О диофантовых приближениях значений некоторых аналитических функций

О диофантовых приближениях значений некоторых аналитических функций
  • Автор:

    Томашевская, Елена Брониславовна

  • Шифр специальности:

    01.01.06

  • Научная степень:

    Кандидатская

  • Год защиты:

    2009

  • Место защиты:

    Брянск

  • Количество страниц:

    99 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
2	Диофантовы приближения числа 7Г числами	из поля Q(V3) 
2.3 Асимптотические оценки


Оглавление
1 Введение
1.1 Современное состояние проблемы диофантовых приближений значений логарифмической функции

1.2 Результаты диссертации

1.3 Используемые результаты

2 Диофантовы приближения числа 7Г числами из поля Q(V3)

2.1 Арифметические свойства

коэффициентов линейной формы

2.2 Уточнение знаменателей

коэффициентов линейной формы

2.3 Асимптотические оценки


линейной формы и знаменателей

3 Оценка меры иррациональности числа log 5 +
4 Диофантовы приближения значений логарифмической
функции
4.1 Оценка меры иррациональности значений функции log ж
4.2 Оценка меры иррациональности линейной комбинации чисел
log 2 и arctan
4.3 Оценка меры иррациональности значений функции arctan ж
4.4 Оценка меры иррациональности числа arctan і
Литература
Глава
Введение
1.1 Современное состояние проблемы диофантовых приближений значений логарифмической функции
Одним из направлений теории диофантовых приближений является получение оценок снизу модулей линейных форм с целыми коэффициентами от значений аналитических функций.
Мерой иррациональности //(7) вещественного числа 7 называется нижняя грань чисел д таких, что для любого є > 0 существует положительное число с/о (є), которое удовлетворяет следующему условию: неравенство
> д-£

7- “
выполняется для всех целых чисел р, д, где д > до (є).
Известно, что мера иррациональности любого иррационального числа д > 2. К настоящему времени установлено достаточно много оценок мер иррациональности значений аналитических функций.
Глава 2. ДИОФАНТОВЫ ПРИБЛИЖЕНИЯ ЧИСЛА ж ЧИСЛАМИ ИЗ ПОЛЯ Q( ч/З)
2.2 Уточнение знаменателей
коэффициентов линейной формы
тт о г гг Вп (34п)!(42?г)!(81п)!
Лемма 2.5. Пусшь = (2,п)!(68к)!(68п)г Ае В» 6 N,
Bn) = 1;
In = В"1 б gglre 242" —т = (лфп) л/3 + Л2(гг)') 7Г + Лз(п)-у/3 + Л4(п).
г sm а
(2.12)
Тогда все Л2(п) £ Z.
Доказательство.
Сначала приведем интеграл I к гипергеомстрическому виду е помощью замены х = cos о: + гл/i sin ct. Имеем
2 cos a — х = cos a — iy/t sin a, ж — cos a = гД sin a;,
x(2 cos a—x) — cos2 a+t sin2 a, —ж+cos a+i sin a = i (l — ft) sin a,
x — cos a + i sin a = i (l + ft) sin a;
П . __L_ . / = . /Sina)n _ . t21n4(l -fn£

г sm a
2(с08 а:)136п+2 ) +
1 ° (2-13)
(2 — /3)170п+1 г рпД(1_/)8ы
226га—1 / / „2 68п+1
{ (1+(2-Д) г)
Применим формулу Эйлера для гипергеометрической функции Гаусса Р(а, Ь; с; г) [1, с.72].

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Тождества алгебр и их представлений Размыслов, Юрий Питиримович 1984
Группы преобразований кривых Рогозинников, Евгений Алексеевич 2014
Стандартные базисы, согласованные с нормированием, и вычисления в полилинейных рекуррентах Горбатов, Евгений Владимирович 2004
Время генерации: 0.115, запросов: 967