+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Аналитические кривые комплексного центроаффинного пространства А/3 и их реализация

Аналитические кривые комплексного центроаффинного пространства А/3 и их реализация
  • Автор:

    Дерягина, Валентина Григорьевна

  • Шифр специальности:

    01.01.04

  • Научная степень:

    Кандидатская

  • Год защиты:

    1983

  • Место защиты:

    Ивано-Франковск

  • Количество страниц:

    151 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
Глава I. Теория двумерных поверхностей Хр в бипла-нарном пространстве Бр 
§ 1.4 Теория двумерных аналитических поверхностей Хр в

О Г Л А В Л Е Н И Я

В в е д е н и е

Глава I. Теория двумерных поверхностей Хр в бипла-нарном пространстве Бр


§ 1.1 Основные понятия бипланарного пространства Бр .. с. 22 § 1.2 Нормализация поверхности Хр с помощью инволюции с. 2

§ 1.3 Инвариантные связности

§ 1.4 Теория двумерных аналитических поверхностей Хр в

бипланарном пространстве Бр

§ 1.5 Поверхности Хр , принадлежащие нормализующей

гиперпрямой Рр


Глава II. Отображение аналитических кривых комплексного центроаффинного пространства Ар на двумерные поверхности Хр бипланарного пространства Бр

§ 2.1 Теория пространственных кривых в центроаффинном


пространстве Ар
§ 2.2. Отображение аналитических кривых комплексного центроаффинного пространства Ар на двумерные поверхности
Хр бипланарного пространства Бр
§ 2..3 Плоские аналитические кривые комплексного центроаффинного пространства Ар и их отображение на двумерные поверхности Хр бипланарного пространства Бр.с.
Глава III. Соответствие между конгруенциями точек комплексного центроаффинного пространства Ар и двумерными поверхностями Хр бипланарного пространства Бр
§ 3.1 Основные свойства соответствия между конгруенциями точек комплексного центроаффинного пространства Ар и двумерными поверхностями Хр в бипланарном пространстве Бр

§ 3.2 Алгебраические конгруенции и алгебраические поверхности Хр
§ 3.3. Характеристический признак двумерной аналитической
поверхности Х2 в пространстве
§3.4 Д - точки алгебраических поверхностей Хр в бипланарном пространстве
Список основной использованной л и т е р а т у р ы

Теории биаксиальных пространств и их обобщений посвящено большое количество работ. Обзор этих работ был дан в статье
А.П.Нордена.
В работе £63 А.П.Нордена "Пространство линейной конгруенции", в частности, рассматривалась связь биаксиальной геометрии с геометрией комплексной центроаффинной плоскости и с теорией функций одной комплексной переменной. Было показано, что поверхности, на которых индуцируется евклидова связность, могут быть отображены на аналитические кривые комплексной центроаффинной плоскости.
Это отображение было подробно изучено в работах сздга.ед И.В.Зуева, который обратил особое внимание на алгебраические поверхности Х^ биаксиального пространства Бд и соответствующие им кривые комплексной плоскости.
В работе £-/33 А.П.Широкова "Геометрия обобщённых биаксиальных пространств" сделано обобщение основных результатов А.П.Нордена для трёхмерного биаксиального пространства на случай пространств высшего числа измерений. Рассматривается проективное пространство нечётного числа измерений {2.11+1 ), в котором задан инвариантный образ в виде линейной конгруенции прямых, построенной на двух инвариантных п -мерных директрисах. Указанное пространство в работе [13] названо сокращённо бипланарным. При П-1 бипланарное пространство совпадает с биаксиальным пространством.
Однако, пространства такого типа уже использовались в работе [10] Б. А .Розенфельда как вещественная реализация комплексного или двойного проективного пространства, хотя подробному изучению и не подвергались. В работе [13] А.П.Широкова разработана теория гиперповерхностей в собственно бипланарных пространствах эллиптического типа ( для которых 1Ъ -мерные директрисы инвариантной ^линейной конгруенции являются комплексно-сопряжёнными плоскостями).

Заменив в ( [ТЗ , с. 312 )
УЧ4-
^ 1 через ^ и учитывая, что $ =0 , получим условие интегрируемости уравнения

а именно
-Я'*9!+ьи£
Произведём теперь свёртывание левой части этого уравнения с тензором где - бивектор, для которого %р - °-
Тогда

1*9* ” К

% 9« ~ 9ч
(#***)
Из (* * # ) и (####) следует
=£.*$
Ик1^ -Ь Ирк^с] ,
откуда
^к1 Й/ = й

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Обобщенные расслоения Вейля многообразий, зависящих от параметров Бушуева, Галина Николаевна 2005
Геометрия псевдооктавных пространств Кузуб, Наталья Михайловна 2004
Свободные топологические группы и локально выпуклые пространства Сипачева, Ольга Викторовна 2003
Время генерации: 0.091, запросов: 967