+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Пространства непрерывных отображений в множественно-открытых топологиях

Пространства непрерывных отображений в множественно-открытых топологиях
  • Автор:

    Осипов, Александр Владимирович

  • Шифр специальности:

    01.01.04

  • Научная степень:

    Докторская

  • Год защиты:

    2012

  • Место защиты:

    Екатеринбург

  • Количество страниц:

    200 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1 Множественно-открытые топологии на пространствах непрерывных отображений 
1.1 Секвеициалмга-компактпо-открытая топология па множестве С(А’. R) .


Оглавление
Введение

1 Множественно-открытые топологии на пространствах непрерывных отображений

1.1 Секвеициалмга-компактпо-открытая топология па множестве С(А’. R) .

1.2 Совпадение А-открытой и А-топологии на множестве С'(Х. D(t))


1.3 О совпадении множественно-открытой топологии и топологии равномерной сходимости на множестве непрерывных отображений

1.4 Тонолого-алгсбраичеекие свойства функциональных пространств

2 С-ком 11 актно-откры гая топология на множестве С(X, R)

2.1 Различные способы определения С-компактпо-открытой 'гомологии

2.2 Взаимоопошепия множественно-открытых топологий

2.3 Метризуемость и свойства типа ( чётности пространства. Crc(X, R)


2.4 Полнота равномерного пространства СГ4.(АЗ R)
2.5 Сопряженное пространство к пространству C’rc(X. М)
3 Слабо множественно-открытая топология на пространстве непрерывных отображений
3.1 Слабо множественно-открытая топология на множестве С(Х R)
3.2 О совпадении слабо множественно-открытой топологии и топологии равномерной сходимости па. множестве непрерывных отображений
3.3 Кардиналымзначпые характеристики функциональных пространств
4 К теории 5(п)-псуплотняемых пространств
4.1 Характеризация 5(н)-за,мкнутых и 6’(«)-нсуплотнясмых пространств .
4.2 О мультипликативности СРСт-нростра!ГСТв
Литература

Введение
Множество С(Х) всех непрерывных всщсствспнозпачпых функций па тихоновском пространстве X обладает различными топологиями. Идея прозрачного описания предельного перехода во множестве функций достигается средствами общей топологии — путем определения той или иной естественной топологии на множестве непрерывных функций С(Х). отражающей свойства связываемых функциями пространств. На множестве С(Х) топологии можно вводить различными неэквивалентными способами, и каждая из возникающих топологий имеет свои преимущества в определенных ситуациях.
Исторически изучение пространств непрерывных отображений из одного топологического пространства в другое активно ведется с конца XIX века. Первые топологии на пространствах функций вводились с целью изучения различных видов сходимости функциональных последовательностей; это были топология поточечной сходимости и топология равномерной сходимости на всем пространстве. Первыми работами, посвященными этой тематике, были статьи Асколи |25], Арцела |24| и Ада-мара [51].
В 1906 году на пространстве отображений из топологического пространства X в произвольное метрическое пространство У Фреше [44] впервые рассмотрел ииртешшп ппЧпс, н соответствующую ей топологию.
Топология равномерной сходимости наС'(А) задается базой в каждой точке / 6 С'(Х). Эта база состоит из всех множеств вида
{д € С(X): ьир ^(.г) - /(.т)| < е}, где е > 0.

Естественным обобщением этой топологии является топология равномерной сходимости на элементах семейства А (А-топология), где А — фиксированное семейство непустых подмножеств пространства X. Базу А-топологии в точке / (Е С(Х) образуют все множества вида

{g 6 C(X): sup Ig(x) - f(x) < e), где F 6 Л и e > 0.

Если r качссггве семейства Л взять все конечные подмножества пространства X, то получившаяся топология называется топологией поточечной сходимости на пространстве СР(Х); если взять все компактные подмножества X — топологией равномерной сходимости на компактах, или компактно-открытой на пространстве Сс(Х).
В 1945 году Фокс [43] определил компактно-открытую топологию Сс(Х), лредбазу которой образуют все множества вида
{/ 6 С(Х): f(F) С U}, где F — компактное подмножество пространства X, a U — открытое подмножество числовой прямой. Заметим, что топология поточечной сходимости может быть определена похожим образом: заменой в определении предбазы компактных подмножеств конечными.
В следующем, 194G году Аренс [20| ввел понятие допустимой топологии на C(X,Y) (т.е. топологии, для которой непрерывно отображение вычисления), а в 1951 году Аренс и Дугунджм [21] определили собственные топологии. В дальнейшем компактно - открытая топология изучалась Джексоном [55], Мори той [70], Келли [57| и другими.
На пространствах непрерывных отображений рассматривались и другие типы топологий. В 1969 году Крикоряп |58| впервые рассмотрел топкую топологию, которая является обобщением топологии, порожденной üupremum metric. В дальнейшем эта топология исследовалась Эклундом [41], МакКоем [62] и другими топологами.
В конце 60-х годов активно изучалась топология графиков — здесь окрестности функций из C(X.Y) определяются окрестностью их графиков в X х Y. Отождествляя функции с их графиками, МакКой |62| рассматривал пространство C{X.Y) как подпространство пространства замкнутых подмножеств произведения X х Y, наделенное токологией Вьеторисса.

Проп рапсі во X называю! < убмсі рисуемым если существует уплотнение / X —> У цс V мсіризусмое просі ране і во
Теорема 1.1.1. Пусть X сцбпетризуемое пространство, и пусть А подмножество X Тогда следующие условия эквивалентны
а) А — компакт
б) А — метризуемыу компакт
в) А — секвенциальный компакт,
г) А — счетно компактное подмножество
д) 4 — псевдокомпакт
е) А С компактное под множ єство
ж) А замкнутое и ограниченное
Доказательство. Импликации б)=>в)=щ )=Ф> ;)=>с) б)=>а)=>ж) следуют из определении
Докажем а) =>б) ІІусіь 4 — ком пак і но В ей ду с убмсі ризусмосги А сущесівусі уплоінение V на мотризуомос пространство У тогда сужение этого уплоїнения намножесіво Л является іомсоморфизмом Отсюда из субметри тусмости А с подует чю А — метри іуемо
Докажем е)=^ж) Так как любое 6'-ком пакт нос подмножество яв ія-ется ограниченным нсобхо щмо доказать замкпуюсіь Пусть 4 — С-комнактное тіоцмножесіво прос ірапсіва X и / — унлоінение пространства X на мсіризусмое просграїк іво У Предположим что А незамкнутое множсст во ют да /(А) также незамкнутое множеспзо пространства У Пусть у 6 /(И) /(И) Рассмотрим систему {13(у £)} — открытых шаров с центром в і очке у ра щуса ^ цля всех п Є N Тої ца
{/_1((У В))) — ечспюс функционально открытое покры-
тие множества 4 из которого нельзя выделить конечное подпокрытие Получили противоречие
Докажем ж)=Н>) ІІусіь А - замкнутое оіраниченное по цмноже-ство пространства X и / — уплотнение пространства X на метризуе-

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Различные виды замкнутости в S(n)-пространствах Осипов, Александр Владимирович 2004
Комбинаторные 2-усеченные кубы и приложения Володин, Вадим Дмитриевич 2013
Характеристические классы аппроксимативно конечных алгебр Никонов, Игорь Михайлович 2003
Время генерации: 0.149, запросов: 967