+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Геометрия тензора конгармонической кривизны приближенно келеровых многообразий

Геометрия тензора конгармонической кривизны приближенно келеровых многообразий
  • Автор:

    Али Абдул Маджид Шихаб

  • Шифр специальности:

    01.01.04

  • Научная степень:

    Кандидатская

  • Год защиты:

    2011

  • Место защиты:

    Москва

  • Количество страниц:

    76 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
Глава 1. Приближенно келеровы сфукгуры 
1.1. Поч I и эрмитовы с грукт уры


Содержание
Введение

Глава 1. Приближенно келеровы сфукгуры

1.1. Поч I и эрмитовы с грукт уры

1.2. Сфуктурные уравнения почт эрмиювой Сфукфры

1.3. Приближенно келеровы многообразия

Глава 2. Тензор конгармонической кривизны приближенно

келеровых многообразий

Глава 3. К-постоянство типа ЛТСмпогообразия


Глава 4. Приближенно келеровы многообразия постоянной голоморфной конгармонической кривизны
Глава 5 Ковариан I ный дифференциал тензора кож армонической кривизны приближенно келерова многообразия Список литературы
Введение
Понятие Л"-пространства, т.е. почти эрмитова многообразия, фундаментальная форма которого является формой Киллинга, является одним из наиболее интересных обобщений понятия келерова многообразия. Оно сравнительно недавно вошло в сферу геометрических исследований и довольно быстро привлекло внимание ряда ведущих геометров, чем объясняется неустоявшаяся терминология: наряду с термином “/б-пространство”, используемым в работах С.'Гатибаны, И.Вагаиабэ, К.Такамацу, И.Саго и др., используются синонимы: “почти (nearly) келерово многообразие” (А.Грей, Дж.Вольф и др.), а также “почти татибаново пространство” (К.Яно, С.Ямагуши, М.Мацумото и др.). Следует отметить также, что термины “nearly Kahler manifold' и ''’almost Kahler manifold' несмотря на идентичность русского перевода, обозначают различные геометрические объекты [1].
Интерес к понятию К-пространства пробудился после того, как в 1955 году А.Фрелихер доказал в [2| существование канонической почти эрмитовой структуры на шестимерной сфере о, вложенной в алгебру октав О в качестве вполне омбилического подмногообразия многообразия /?s=0, а Т.Фуками и С.Исихара в [3] доказали, что фундаментальная форма этой структуры является формой Киллинга (т.е. ее ковариаитный дифференциал является дифференциальной формой), что, очевидно, равносильно приближенной келеровости этой структуры. В 1959 году вышла работа С.Татибаны [4], в которой /-пространство

вьісіуиасі уже как самоеюятельный геомсірический обьекі. Среди более поздних работ, посвященных исследованию /-пространств следует выделить работы А.Грея, в особенности, [5], [6] и [7] написанную совмссшо с Дж Вольфом, в коюрых получено большое число относящихся к )той области результатов и поставлен ряд задач
Одним из факюров, обуславливающих иніерес к /б-прострапсі вам, являє іся их близосіь к келеровым многообразиям, богатство геометрических свойств которых хорошо известно. Возникает есгесівенньїй вопрос, какие из эшх свойсів допускаю! зксіраполяцию на обласіь А'-просірансів, причем оівет на э і о і вопрос іребуег более глубокого понимания природы этих свойств. Один из способов подхода к этму вопросу сосюяі в нахождении определенных юждесів, коюрым уцовлеїворясі оиераюр кривизны А'-нросірансіва и коюрыс аналогичны соответствует тождествам, известным для келеровых многообразий. Это позволяет перенести доказательства ряда свойсів келеровых М1Ю1 ообразий па случай А'-просірансів с пекоюрыми изменениями. Такой способ со всеми его достоинствами и недостатками был широко использован А.Греем в [5] и рядом других авюров.
Другой і ип сюящих в э і ой области задач состоиі в исследовании свойств априорно определенных видов К-пространств (например, конформно-плоских /б-пространсі в, Допросірансів постоянной голоморфной секционной кривизны и т п ) и, как завершающая фаза такого исследования, классификации /б-просгранств этих видов. Задачи іакою іипа рассмаїриваются, например, в [5ф [6], [8], и др.

сформированный в ряде его работ ([30], [5], [9] и др.), в соответствии с которым ключом к пониманию дифференциально-геометрических свойств келеровых многообразий являются тождества, которым удовлетворяет их тензор римановой кривизны:
/?, :{/?(Л",У)гЛ)-(Я{Х,У)Л,ЛУ);
/ф :(/?(Л К)2,Ж) = У)Х,Г) + (1фХ, У).Л,1У) + (М(./Х,У)г,Ж);
Я3:(1?(Х,У)г,1Г) = (к(М,,/У)Л,Ж).
АН-структуры, тензор И которых удовлетворяет тождеству /?„ называются структурами класса /?,. Если бсМЯ- какой-либо подкласс Л/-/-структур, то принято обозначение 6пИ =&, ; / = 1, 2, 3 [20].
Хорошо известно, что К а /ф с /?2 с: /ф [5]. Ввиду этого естественно ожидать, что среди ЛЯ-миогообразий по дифференциально-геометрическим и топологическим свойствам наиболее близки к келеровым многообразиям многообразия класса /ф, затем многообразия класса /ф и, наконец, многообразия класса /ф. Многообразия класса /ф рассматривали Баррос и Рамирес [31], Саваки и Секигава под названием Г-пространств [32], а также Рицца под названием паракелеровых многообразий [33]. Многообразия класса /ф , или многообразия с ./-инвариантным тензором кривизны, называются также // К -м и ого об раз ним г I. Наряду с А. Греем их рассматривали Ванхекке [34], [35], Навейра, Хервелла [36] и другие авторы. Многообразия класса /ф, пока не имеющие специального наименования, были введены в рассмотрение А.Греем в связи с изучением приближенно келеровых многообразий ввиду того, что МКа /ф , и рассматривались Греем и Ванхекке [37], Уотсоном и Ванхекке [38], и другими авторами.
Пусть (М, У, £) - ХЯ-многообразие размерности 2п, К - тензор конгармонической кривизны.
Определение 2. Многообразие (Л/,/,,§) называется многообразием класса:

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Мозаики из выпуклых пятиугольников Багина, Ольга Георгиевна 2013
Свободные топологические группы и локально выпуклые пространства Сипачева, Ольга Викторовна 2003
Геометрия семейств линейных подмногообразий Капленко, Элеонора Федоровна 1983
Время генерации: 0.099, запросов: 967