+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Исследование геометрических свойств погружений многообразий

Исследование геометрических свойств погружений многообразий
  • Автор:

    Аминов, Юрий Ахметович

  • Шифр специальности:

    01.01.04

  • Научная степень:

    Докторская

  • Год защиты:

    1983

  • Место защиты:

    Харьков

  • Количество страниц:

    236 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"Глава I. О ПОГРУЖЕНИИ ОБЛАСТЕЙ П -МЕРНОГО ПРОСТРАНСТВА 
ЛОБАЧЕВСКОГО В )-МЕРНОЕ ЭВКЖДОВО ПРОСТРАНСТВО

Глава I. О ПОГРУЖЕНИИ ОБЛАСТЕЙ П -МЕРНОГО ПРОСТРАНСТВА

ЛОБАЧЕВСКОГО В )-МЕРНОЕ ЭВКЖДОВО ПРОСТРАНСТВО


§ I.. Лемма о голономности главных направлений на подмногообразии отрицательной кривизны

§ 2. Координатная сеть линий кривизны на погруженной

области пространства

§ 3. Основная система погружения Л,П в Е и локально

аналитические погружения

§ 4. Теоремы о грассмановом образе

§ 5. Изучение основной системы погружений Ц1 в Е*П *

§ 6. Гиперболическое уравнение для коэффициентов Лямэ

§ 7. Существование выпуклой функции Дарбу


§ 8. Преобразование Бианки для области многомерного
пространства Лобачевского
§ 9. О погружениях в Ь
7 3 Гт
§ 10. Изометрические погружения ь в Ь , при которых
линии кривизны одного семейства - геодезические;
§ II. Функционально вырожденные погружения
§ 12. Локальные погружения /_,3 в Е5 с гиперплоским
грассмановым образом
§ 13. Основная система погружения Ц* в Е5 с гиперплоским грассмановым образом
§ 14. Изометрические погружения і* в Е* и движение
твердого тела с закрепленным центром масс в поле
тяготения
I 3 гг
§ 15. О погружениях и в и с семейством вполне геодезических поверхностей кривизны

Глава II. О НЕУСТОЙЧИВОСТИ МИНИМАЛЬНОЙ ПОВЕРХНОСТИ В П -МЕРНОМ РЙМАНОВОМ ПРОСТРАНСТВЕ ПОЛОЖИТЕЛЬНОЙ
КРИВИЗНЫ
§ I. Вторая вариация площади поверхности
§ 2. Сумма двух вторых вариаций
§ 3. Вариации, определяемые кручением поверхности
§ 4. Доказательство теоремы о неустойчивости
§ 5. Теорема об устойчивости
Глава III. ВНЕШНИЙ ДИАМЕТР ПОГРУЖЕННОГО РИМАНОВА
МНОГООБРАЗИЕ
Оценка внешнего диаметра подмногообразия через модуль вектора средней кривизны
Оценка внешнего диаметра УЬ -мерного подмногообразия в (Д14.-3 )-мерном эвклидовом пространстве через объекты внутренней геометрии
Оценка внешнего диаметра геодезического круга на поверхности отрицательной кривизны в Б3
Оценка внешнего диаметра гиперповерхности эвклидова пространства через объекты её внутренней геометрии
О неограниченности минимальной поверхности в римано-вом пространстве неположительной кривизны
Глава IV. О ДВУМЕРНЫХ ПОВЕРХНОСТЯХ В ЧЕ1ЫРЕХМЕРН0М ЭВКЛИДОВОМ ПРОСТРАНСТВЕ
§ I. О грасемановом образе двумерной поверхности в четырех* мерном эвклидовом пространстве
§ 2. Определение поверхности в 4-мерном эвклидовом пространстве по её грассманову образу
§ I. § 2.
§ 3. § 4. § 5.

120 124 126 131

- 4 -■ 1п
§ 3. О погружениях Ь в Е с У полями главных
направлений
§ 4. О погружениях областей и ъ С с нулевым гауссовым
кручением
ЛИТЕРАТУРА
Теорема 3.1« Для любого К -мерного подмногообразия в
І П г— Г*-П~ *
Ь с с при к ^ 2 и кі >2 к -мерный объем его образа при отображении "у больше, чем объем прообраза на этом подмногообразии.
Из этой теоремы вытекает следующее предложение о непогружаемосI п
ти полного пространства Ь :
Не существует регулярного изометрического погружения полного
І п і- 2п-і пи
пространства и в о , при котором грасеманов образ / лежит на замкнутом П -мерном подмногообразии и грассманово отображение является конечнократным отображением /_П на его образ. Объем образа надо считать с учетом кратности покрытия. Пусть к -мерное подмногообразие Г* в /- задается; уравнениями
И;=и^*, Хк) ,
Коэффициенты метрического тензора метрики на р* индуцирован-/ П
ной метрикой L , равны
4и; = £ Ііпбі 0 0 7“ 1 дхк эхПоложим
д3, .
• я?
Ич . Мі*
ЭХк
Нетрудно найти детерминант метрического тензора

Рекомендуемые диссертации данного раздела

Время генерации: 0.123, запросов: 967