+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Аналитические методы в теории однородных эйнштейновых многообразий

Аналитические методы в теории однородных эйнштейновых многообразий
  • Автор:

    Никоноров, Юрий Геннадьевич

  • Шифр специальности:

    01.01.04

  • Научная степень:

    Докторская

  • Год защиты:

    2002

  • Место защиты:

    Рубцовск

  • Количество страниц:

    211 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1 Функционал скалярной кривизны и вариационный принцип для метрик Эйнштейна 
1.2 О характеризации критических точек функционала скалярной кривизны

1 Функционал скалярной кривизны

1.1 Функционал скалярной кривизны и вариационный принцип для метрик Эйнштейна

1.2 О характеризации критических точек функционала скалярной кривизны


1.3 Об однородных метриках положительной кривизны Риччи на компактных однородных пространствах

2 Применение вариационного принципа

2.1 Эйнштейновы левоинвариантные метрики на группах Ли

2.2 Инвариантные эйнштейновы метрики на пространствах Леджера-Обаты

2.3 Об одном классе однородных компактных многообразий Эйнштейна

2.4 Новые серии эйнштейновых инвариантных метрик


2.5 О кривизне Риччи инвариантных метрик на некомпактных однородных пространствах с полупростой группой движений
2.6 Об одном классе однородных эйнштейновых многообразий с унимодуллрной группой движений

3 Компактные однородные многообразия Эйнштейна малой размерности
3.1 Компактные шестимерные однородные многообразия Эйнштейна
3.2 Компактные семимерные однородные многообразия Эйнштейна
4 Стандартные однородные эйнштейновы многообразия
4.1 Стандартные однородные эйнштейновы многообразия и диофантовы уравнения
4.2 Алгебраическая структура стандартных однородных эйнштейновых многообразий
Список литературы

Данная диссертация посвящена исследованию однородных риманоных многообразий (М,/?), риманова метрика которых является эйнштейновой, то есть удовлетворяет уравнению Шс(р) = С • р для некоторой константы С.
Рассматриваемая задача является логичным продолжением задачи исследования риманоных многообразий постоянной секционной кривизны, полностью решенной Дж. Вольфом [10]. К настоящему времени известны частичные классификации однородных эйнштейновых многообразий. Достаточно давно Э. Картавом найдена классификация симметрических пространств [03], О.В. Манту-ровым [17, 18, 19] и Дж. Вольфом [100] независимо получена классификация строго изотропно неприводимых пространств, М. Ваном и В. Киллером классифицированы стандартные однородные эйнштейновы многообразия с простой группой движений [102], Е.Д. Родионовым получена классификация стандартных однородных эйнштейновых многообразий с простой группой изотропии [57]. Кроме того большие успехи достигнуты в классификации однородных эйнштейновых многообразий с различными ограничениями на алгебраическую структуру соответствующих однородных пространств. Подробное изложение этих вопросов можно найти в энциклопедическом издании по эйнштейновым многообразиям [9]. Здесь мы отмстим некоторые из работ, авторам которых мы обязаны разработкой методов исследования инвариантных эйнштейновых метрик, это работы Дж. Вольфа [100, 107], Э. Калабн [72], С.Т. Яу [108, 109, 110], Г. Иснссна [82, 83, 84, 85], М. Громова [79], М. Вана и В. Циллсра [101, 102, 103, 101, 111, 112, 100], Н. Хитчина [81], Д.В. Ллскссевского и Б.Н. Ки-мельфельда [1, 2, 3, 4, 5, 0, 7], О.В. Мантурова [17, 18, 19], Е.Д. Родионова [49]-[50] и многих других математиков.
Отмстим, что в последнее время появилось много новых работ по вопросам, близким к обсуждаемому. В частности, была получена классификация плтимер-ных однородных эйнштейновых многообразий [60] и достигнут существенный прогресс в изучении эйнштейновых солпмпогообразий [86].
Методика исследований во многом ориентирована на использование аналиметрики, таким образом, мы получили глобальную параметризацию а<4-инва-риантных метрик на д. Перейдем к вычислению скалярной кривизны.
Пусть

[е/.е,] = Еф:*'

Тогда, если 5 < 5, то, как нетрудно показать,
п п
сйх8к + ^2 ^2 ^ qrXqт •
к=1 4<зг
где Ьдг — 0 при условии = 1.
Используя предыдущее равснстпо, формулу 7.39 из [0] и равенство
Е<в.еі1> 1е<> с>) = - Е в(с» е<) = п >
и . *
легко получить следующую формулу для скалярной кривизны метрики (*, •):
•)) = т ЕЫ2 + ЕЮ2 >
4 і а
где аа — функции от переменных обращающиеся в 0 в случае гц = 1 (1 < і<г< I). Легко показать, что
5; , = ^ и 5'
мі О
при і < і в точке, где гц = 1 (1 < і < г < I). Таким образом, учитывал огра-і
ннченне на объем П -я = 1, мы получаем, что точка с координатами гц

(1 < і < і < I) является критической точкой функционала скалярной кривизны 5 на множестве <н4-ннвариантных метрик объема 1, т.е. она в силу утверждения теоремы 1.1.1 определяет эйнштейнову метрику, которая, очевидно, является неразложимой. Теорема доказана.
2.2 Инвариантные эйнштейновы метрики на пространствах Леджера-Обаты
Пусть F- простая компактная связная группа Ли, Є = FxFx...xF (п множителей в произведении, п > 2), II = £^шд(F). Объектом нашего исследования являются С-инварнантныс эйнштейновы метрики на пространстве Леджера-Обаты

Рекомендуемые диссертации данного раздела

Время генерации: 0.150, запросов: 967