+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Геометрические структуры на бесконечномерных многообразиях

Геометрические структуры на бесконечномерных многообразиях
  • Автор:

    Романова, Елена Михайловна

  • Шифр специальности:

    01.01.04

  • Научная степень:

    Кандидатская

  • Год защиты:

    2005

  • Место защиты:

    Казань

  • Количество страниц:

    102 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
Глава 1. Многообразие ориентированных незамкнутых кривых 
1.3. Ковариантное дифференцирование


® Введение

Глава 1. Многообразие ориентированных незамкнутых кривых

в евклидовом пространстве

. • 1.1. Структура многообразия

1.2. Группа движений

1.3. Ковариантное дифференцирование

1.4. Структура фактормногообразия

1.5. Линейная связность

^ Глава 2. Многообразие невырожденных аффинорных полей

2.1. Структура группы Ли

2.2. Связность Картана



Глава 3. Многообразие компактных подмногообразий евклидова пространства
3.1. Естественные карты и преобразование координат
3.2. Линейная связность 3.3 Тензор кривизны
3.4. Метрика
3.5. Гиманова связность
3.6. Гасслоение гладких тензорных полей
3.7. Инфинитезимальная связность
3.8. Тензор кривизны на расслоении гладких функций Библиография

АКТУАЛЬНОСТЬ ТЕМЫ ДИССЕРТАЦИИ
Изучением бесконечномерных дифференцируемых многообразий ученые-математики занимаются уже больше века. За это время были получены значительные результаты в изучении и применении банаховых многообразий ([1], [5], [10], [16] и др.), но работ, посвященных многообразиям Фрсше, появилось меньше ([17], [18] и др.). В них приводятся основные определения и теоремы, а также примеры, рассматривающие дифференциальнотопологические свойства бесконечномерных многообразий, но мало внимания уделяется построению геометрических структур, а именно, нахождению связностей (линейной и римановой) и тензора кривизны.
Теория связностей, введение метрики, вычисление тензоров кривизны и кручения, построение гладких структур многообразий и расслоений — вот одни из основных вопросов дифференциальной геометрии, которые рассмотрены в данной диссертации. Они представляют интерес для таких областей знания, как вариационное исчисление, теория относительности, механика и гидродинамика.
ЦЕЛЬ ДИССЕРТАЦИИ — изучение бесконечномерных многообразий банахова типа и типа Фреше: построение структуры банахова многообразия на множестве ориентированных незамкнутых кривых в евклидовом пространстве и нахождение объекта плоской линейной связности на этом многообразии; построение связности Картана на группе Ли невырожденных аффинорных полей; изучение линейной связности и ее тензора кривизны на многообразии компактных подмногообразий евклидова пространства и введение римановой связности на этом многообразии; построение структуры векторного расслоения типа Фреше, слоями которого являются все гладкие сечения тензорного расслоения произвольного компактного подмногообразия евклидова пространства, изучение инфинитезимальной связности и ее тензора кривизны на этом расслоении.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ являются новыми и заключаются в следующем:
1) Методом проектирования линейной связности доказывается, что многообразие плоских ориентированных незамкнутых кривых без точек спрямления, определяемых с точностью до движения, является локально плоским пространством линейной связности.
2) Доказывается, что фактормногообразие невырожденных аффинор-ных полей по действию группы обратимых функций является группой Ли, на которой строится объект связности Картана - линейной связности нулевой кривизны, но ненулевого кручения.
3) На многообразии компактных подмногообразий евклидова пространства строится объект линейной связности и вычисляется ее тензор кривизны.
4) Вводится риманова структура на многообразии компактных подмногообразий евклидова пространства.
5) Строится векторное расслоение Фреше гладких тензорных полей над многообразием компактных подмногообразий евклидова пространства. Находится объект инфинитезимальной связности на этом расслоении и для
действующее по правилу
Уж Е М (БеН4)(ж) = detAp(cf)(x)),
причем определитель д.еЬАр(ф(х)) не зависит от выбора карты (U, ф) в точке ж Е М.
Отображение Det есть композиция двух отображений: взятие определителя матрицы и взятие координат тензорного поля. Обе эти операции непрерывны, а значит, Det - непрерывное отображение.
Тогда То = Det-1 (То) - открыто, как прообраз открытого множества при непрерывном отображении.
Т/(М) - банахово (нормируемое) пространство с нормой
1ИИ — sup sup stop sup Dr{Af)^x).
r=0,q—1 i=l,fc xeVi
А поскольку множество невырожденных матриц порядка т образует группу и операции умножения и инверсии в ней гладкие, то То является группой Ли.
На То определим отношение эквивалентности:
A*B&3feF0 A = fB.
Тогда То/То - фактормножество многообразия То по этому действию группы То, 7г: А Е То [А] Е Tq/Fq.
УТВЕРЖДЕНИЕ 2.3. Фактормножество Tq/Fq является фактормного-образием, (То, 7г, Tq/Fq, То) есть главное расслоение.
Доказательство:

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Двойственная геометрия распределения Картана Кузьмина, Наталья Александровна 2009
Граничные наклоны трехмерных многообразий Сбродова, Елена Александровна 2008
Топологии раздельной непрерывности Гриншпон, Яков Самуилович 2006
Время генерации: 0.212, запросов: 967