+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Асимптотические разложения решений шестого уравнения Пенлеве

Асимптотические разложения решений шестого уравнения Пенлеве
  • Автор:

    Горючкина, Ирина Владимировна

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2006

  • Место защиты:

    Москва

  • Количество страниц:

    124 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1. Вычисление степенных асимптотик решения 
1.1.1. Основные определения и постановка задачи

1. О плоской степенной геометрии

1.1. Вычисление степенных асимптотик решения

1.1.1. Основные определения и постановка задачи

1.1.2. Выделение укороченных уравнений

1.1.3. Решение укороченного уравнения

1.1.4. Критические числа укороченного решения

1.1.5. Асимптотики с комплексными показателями степени


1.2. Разложения решений со степенными асимптотиками: степенные и степенно-логарифмические разложения

1.2.1. Постановка задачи

1.2.2. Носитель разложения решения

1.2.3. Вычисление разложений


1.2.4. Степени логарифмов в разложении
1.2.5. Решетка носителя разложения
1.2.6. Вычисление второго приближения
1.2.7. Комплексные показатели
1.2.8. Существование решений
1.3. Нестепенные асимптотики решений
1.3.1. Основные определения и постановка задачи
1.3.2. Случай вертикального ребра
1.3.3. Случай горизонтального ребра
1.3.4. Случай вершины

1.4. Разложения решений с нестепенной асимптотикой: сложные разложения
1.4.1. Постановка задачи
1.4.2. Вычисление критических чисел
1.4.3. Вычисление носителя разложения
2. Разложения решений шестого уравнения Пенлеве в случае а ■ Ь ф 0 вблизи нуля и бесконечности
2.1. Общие свойства уравнения
2.1.1. Постановка задачи
2.1.2. Носитель и многоугольник
2.1.3. Нормальные конусы
2.1.4. Симметрии
2.1.5. Исключительные решения
2.2. Разложения решений вблизи нуля, соответствующие вершинам
2.2.1. Выбор вершин
2.2.2. Разложения решений, соответствующие вершине Г^.
2.3. Разложения решений вблизи нуля, соответствующие ребру
р(Р
I 4
2.3.1. Предварительный анализ
2.3.2. Разложения решений при а ^ с^О
2.3.3. Разложения решений при а = с
2.3.4. Разложения решений при а ф 0, с
2.3.5. Сводка результатов и их обсуждение
2.4. Разложения решений вблизи нуля, соответствующие ребру р(В

2.4.1. Разложения решений при Ь ф (1 — 1/2
2.4.2. Разложения решений при Ъ — (1— 1/2
2.4.3. Разложения решений при с? = 1/2, Ь ф
2.4.4. Сводка результатов и их обсуждение

2.5. Разложения решений вблизи бесконечности
2.5.1. Разложение, соответствующее вершине Г®
2.5.2. Разложения решений, соответствующие ребру Г^
2.5.3. Разложения решений, соответствующие ребру Г^
2.5.4. Сводка результатов
3. Разложения решений шестого уравнения Пенлеве в случаях а = 0, бу^Оиа^О, Ь = 0 вблизи нуля и бесконечности
3.1. Общие свойства уравнения
3.1.1. Постановка задачи
3.1.2. Носители и нормальные конусы
<3.2. Разложения решений вблизи нуля, соответствующие вершине Гд0^
3.2.1. Разложения решений со степенной асимптотикой
3.2.2. Нестененные асимптотики
3.3. Разложения решений, соответствующие ребру
3.4. Разложения решений вблизи нуля, соответствующие ребру
г£}
3.4.1. Предварительный анализ
3.4.2. Разложения решений при а — 0, Ь • с
3.4.3. Разложения решений при а — с — 0, Ь ф
3.5. Разложения решений вблизи бесконечности при а = 0, Ь ф 0
3.5.1. Разложения решений вблизи бесконечности, соответствующие вершине
3.5.2. Разложения решений вблизи бесконечности, соответствующие ребру
3.0. Сводка результатов в случае а = 0, Ь ф
3.7. Разложения решений в случае а ^ 0, Ь
3.7.1. Разложение, соответствующее вершине
3.7.2. Разложение, соответствующее вершине Гд0^
3.7.3. Разложения решений, соответствующие

Разложение (2.2.4) было известно ранее. В [41, 43, 51-54] доказана его сходимость для малых |т| разными способами.
При Im г = 0 носитель (2.2.3) разложения (2.2.4) вещественный.
Рассмотрим случай, когда Im?' ф 0. Изобразим на плоскости Regijlmgi множество К U {г}. Пусть, например, Im г = 1. При разных значениях Rer = 1/4, Rer — 1/2, Rer = 3/4, это множество показано на рис. 7, 8, 9 соответственно. Из рис. 6 видно, что при Re г = 1/2 значению Res = 1 соответствуют два значения Ims = 0 и Im5 = 2, что отлично от случая Im г = 0 (см. [10], [15]).
Вычислим второе приближение разложения (2.2.4) в случае комплексного носителя (2.2.3).
Велу чае 1>Вег>1/2 второе приближение решения есть (см. рис. 9)
у = сгхт + СХ. (2.2.5)

Рекомендуемые диссертации данного раздела

Время генерации: 0.122, запросов: 967