+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск
Нелокальные параболические задачи
  • Автор:

    Шамин, Роман Вячеславович

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2002

  • Место защиты:

    Москва

  • Количество страниц:

    89 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1 Параболические функционально-дифференциальные уравнения. 
1.1 Существование и единственность обобщенных решений


Оглавление

0.1 Введение

1 Параболические функционально-дифференциальные уравнения.

1.1 Существование и единственность обобщенных решений

1.2 Сильная разрешимость


1.3 Пространства.начальных данных для параболических операторно-дифференциальных уравнений

1.4 Примеры параболических функционально-дифференциальных уравнений

2 Параболические нелокальные задачи.

2.1 Нелокальные условия без подхода носителей нелокальных членов к границе

2.2 Нелокальные условия в цилиндре

2.3 Параболические задачи с нелокальными условиями на сдвигах границы



З Гладкость решений нелокальных параболических задач.
3.1 Гладкость решений параболических задач с нелокальными условиями без подхода носителей нелокальных членов к границе
3.2 Гладкость решений параболических задач с нелокальными условиями на сдвигах границы
3.3 Гладкость решений параболических дифференциально-разностных уравнений
Список литературы
0.1 Введение
1. В настоящей диссертации изучаются два вида нелокальных задач: первая смешанная задача для параболических функционально-дифференциальных уравнений и параболические уравнения с нелокальными краевыми условиями.
Основы общей теории краевых задач для эллиптических функционально-дифференциальных уравнений и эллиптических уравнений с нелокальными краевыми условиями были созданы в работах А.Л. Скубачев-ского |10| - [13], [32]. Были получены необходимые и достаточные условия выполнения неравенства типа Гординга, исследованы вопросы однозначной, фредгольмовой и нетеровой разрешимости в пространствах Соболева и в весовых пространствах, а также гладкости обобщенных решений. Наиболее полное изложение теории эллиптических краевых задач для дифференциально-разностных уравнений и обширную библиографию можно найти в [31].
Параболические функционально-дифференциальные уравнения, содержащие преобразование по временной переменной рассматривались в работах [2]-[4], [25], [39], [23], [24], [22] и др.
Параболические функционально-дифференциальные уравнения, изучаемые в настоящей диссертации, содержат преобразование пространственной переменной. Изучение таких уравнений мотивируется различными приложениями.

Теорема 1.9 Пусть для операторов выполнено условие 1.24• Тогда задача (1.25)-(1.27) имеет единственное сильное решение тогда и только тогда, когда (р € Н1 ((}).
Доказательство. Покажем, что операторы Т^д, Т*-д удовлетворяют условию 1.2. Легко видеть, что операторы Т^д, 7^*д ограниченно отображают Я1(<Э) в Я1(<3). По условию теоремы Ат и Ат* будут сильно эллиптичными.
В силу теоремы 1.7, критерием сильной разрешимости задачи (1.25) (1.27) является принадлежность р пространству Я1(<3). ■

Рекомендуемые диссертации данного раздела

Время генерации: 0.140, запросов: 967