+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Некоторые классы двумерных интегральных операторов с подвижными и неподвижными особенностями и их приложения к краевым задачам для эллиптических систем с сингулярными коэффициентами

Некоторые классы двумерных интегральных операторов с подвижными и неподвижными особенностями и их приложения к краевым задачам для эллиптических систем с сингулярными коэффициентами
  • Автор:

    Зарифбеков, Мародбек Ширинбекович

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2004

  • Место защиты:

    Душанбе

  • Количество страниц:

    91 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1 Описание пространств функций и некоторые вспомогательные сведения 
1.1 Описание используемых пространств функций


ГЛАВА 1. НЕКОТОРЫЕ КЛАССЫ ДВУМЕРНЫХ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ С ПОДВИЖНЫМИ И НЕПОДВИЖНЫМИ ОСОБЕННОСТЯМИ

1 Описание пространств функций и некоторые вспомогательные сведения

1.1 Описание используемых пространств функций

1.2 Нетеровы операторы и основные их свойства

2 Теория нетера и индекс некоторых двумерных сингулярных

интегральных операторов с суммируемыми однородными ядрами и ядрами Бергмана

2.1 Некоторые вспомогательные утверждения

2.2 Лемма о факторизации оператора А


3 Теория нетера и индекс двумерных сингулярных интегральных операторов с четной характеристикой, с суммируемыми однородными ядрами и поли-керн ядрами Бергмана

3.1 Вспомогательные утверждения

3.2 Модельное интегральное уравнение


3.3 Лемма о факторизации оператора А и формулировка результатов
4 Теория разрешимости одного модельного интегрального уравнения с однородным ядром
ГЛАВА 2. КРАЕВЫЕ ЗАДАЧИ ДЛЯ ЭЛЛИПТИЧЕСКИХ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С СИНГУЛЯРНЫМИ КОЭФФИЦИЕНТАМИ
5 Задача Дирихле для одного класса эллиптических систем
второго порядка с сингулярными коэффициентами
6 Задача Римана - Гильберта для обобщенной системы Коши
- Римана с сингулярными коэффициентами
6.1 Задача Римана — Гильберта при т >
6.2 Задача Римана - Гильберта при т <
6.3 Задача для модельного уравнения
ЛИТЕРАТУРА

Введение (Обзор литературы. Основные результаты работы)
Методы сингулярных интегральных уравнений и операторов являются одним из мощных средств решения задач современной математики, математической физики, прикладной математики и механики.
Рассматриваемые в работе двумерные интегральные операторы с подвижными и неподвижными особенностями наряду с двумерным оператором сингулярного интегрирования 5 содержат также операторы Бергмана В, комплексного сопряжения К и интегральный оператор с однородным ядром Н, а также различные композиции этих операторов.
Таким образом, исследования диссертации примыкают с одной стороны к направлению, связанному с теорией сингулярных интегральных уравнений (С. Г. Михлин [69]-[71], А. Кальдерон и А. Зигмунд [80]-[83], И. Н. Векуа [16], И. Б. Симоненко [74], А. Джураев [41]-[46], Р. В. Дудучава [47],[51], Н. Л. Василевский [12]-[15], И. И. Комяк [53]-[57], Б. М. Бильман и Г. Джанги-беков [8]-[10], Г. Джангибеков [21]-[35]), а с другой - к направлению, связанному с интегральными уравнениями с однородными ядрами, введенными в рассмотрение Л.Г.Михайловым [61]-[68] при изучении дифференциальных уравнений с сингулярными коэффициентами.
Предлагаемая работа состоит из двух глав со сквозной нумерацией разделов.
В первой главе работы в лебеговом пространстве с весом ІР изучаются некоторые классы двумерных интегральных операторов с подвижными и неподвижными особенностями по ограниченной области. Эти операторы содержат как интегралы с подвижной ( = 2 (сингулярной) особенностью, так и интегралы с неподвижной £ = 2 — 0 (с однородными ядрами) особенностью, а также интегральные операторы, имеющие особенности на границе области, и как выяснилось, все эти особенности сильно влияют на нетеровость и индекс оператора. Посредством факторизации оператора удается получить необходимые и достаточные условия нетеровости и вычислить индекс указанных операторов.
Во второй главе работы даются приложения полученных результатов первой главы по интегральным операторам к исследованию задачи Ди-

а эти пространства инвариантны относительно оператора и поскольку для нормальной разрешимости (или нетеровости) уравнения (4.1) в Ер необходимо и достаточно, чтобы оно было нормально разрешимым (нетеровым) в замкнутых подпространствах Ек и Ем, то в силу доказанной леммы разрешимость уравнения (4.1) в Ед эквивалентна его разрешимости в Ещ.
Уравнение (4.1), рассматриваемое в Е^0, эквивалентно конечной совокупности пар одномерных интегральных уравнений относительно коэффициентов Фурье fk(r), /п-/с(г) искомой функции /(х) ( — + п < к < Уо)-
4.4. Случай п > 0. В этом случае из (4.2) с учетом не повторяемости пар, для определения функции /а(г) и /п-к{г) получим следующие системы:

/1 /Т^+1
/п~к(р)Лр = дк(г),
(4-4)
/1/Гп~к+1
-(-) /к(р)Лр = дп-к(г),

где п + 1 < к < Уо;

/1 /г
Д-] 1п-к(р)<1р = дк(г),
г г (4-5)
/к(р)<1р = дп-к(г),

где щ < к < п,
ГП1 I й, если п — четное,
По = 9 = 1 П
если п — нечетное.
Рассматриваемые в пространствах Ьрд_ 1.(0,1), С^(0,1), Мр{0,1) (1 <
Р р
р < оо, 0 < /3 < 1) системы (4.4), (4.5) относятся к системам интегральных уравнений с ядрами однородными порядка (-1), удовлетворяющими надлежащим условиям суммируемости с показателем /3 : 0 < /3 < 1. Поэтому к ним применимы результаты [61], [6].

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Спектральные свойства многоточечных задач Завгородний, Михаил Григорьевич 1984
Стационарный метод Галеркина для неклассических уравнений с меняющимся направлением времени. Ефимова, Елена Сергеевна 2019
Групповое преследование в рекуррентных дифференциальных играх Соловьева Надежда Александровна 2016
Время генерации: 0.113, запросов: 967