+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Исследование граничных свойств функций, аналитических по Дуглису

Исследование граничных свойств функций, аналитических по Дуглису
  • Автор:

    Николаев, Владимир Геннадьевич

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2015

  • Место защиты:

    Великий Новгород

  • Количество страниц:

    105 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1 Задача Шварца и ее связь с задачей Дирихле для эллиптических систем 
1.1 Определение ^аналитических функций



Содержание
Введение

1 Задача Шварца и ее связь с задачей Дирихле для эллиптических систем

1.1 Определение ^аналитических функций

1.2 Постановка задачи Шварца

1.3 Однородная задача Шварца в специальных случаях

1.4 Граничные свойства А-голоморфных функций


1.5 Теоремы существования и единственности решений для эллиптических уравнений и систем

1.6 Редукция задачи Шварца к задаче Дирихле для систем

1.7 Существование и единственность решений для специальных


матриц
2 Задача Шварца для размерности п
2.1 Редукция к скалярному уравнению
2.2 Теорема единственности решения для матриц с кратными собственными числами
2.3 Об одном соотношении между вещественными и голоморфными функциями
2.4 Методы построения примеров неединственности решения. Специальная классификация 2 х 2-матриц
3 Нарушение принципа максимума модуля для .7-аналитических функций
3.1 Основная теорема

3.2 Нарушение принципа максимума модуля в общем случае
Заключение
Список сокращений и условных обозначений
Список литературы

Введение
Актуальность темы исследования
Диссертационная работа посвящена исследованию граничных свойств вектор-функций, аналитических по Дуглису («/-аналитических функций). Основные результаты относятся к исследованию задачи Шварца для J-аналитических функций. Отметим, что к этой задаче сводятся краевые задачи для многих интересных эллиптических систем дифференциальных уравнений в частных производных первого и второго порядков.
Впервые «/-аналитические функции были рассмотрены А. Дуглисом (A. Douglis), который назвал их гипераналитическими. В дальнейшем это направление развивалось Д. Паскали, Д. Хорватцем, Б. Боярским, Р. Гильбертом, Д. Хайлом, А.П. Солдатовым и др. В частности, для них был построен аналог теории аналитических функций, поэтому теперь эти функции мы называем аналитическими по Дуглису.
Хорошо известно, что решения уравнения Лапласа
д2и д2и дэ? + д^
описываются как вещественная часть аналитических функций. Через аналитические функции выражаются и решения более общих эллиптических уравнений с вещественно аналитическими коэффициентами.
Единый подход к изучению этих представлений был предложен И.Н. Векуа. В дальнейшем A.B. Бицадзе было получено представление через аналитические вектор-функции и их производные общего решения эллиптических систем.

Теорема 1.5.5. Пусть матрица В в (1.5.7) не имеет собственных чисел вида ti, t G К, а ее жорданова форма диагоналъна. Пусть граница Г односвязной области D С М'“2 является линией Ляпунова (см. определение 1.4.2).
Тогда для любой граничной функции ip(z) Е Нп(Г) , 0 < а < 1 задача Дирихле (1.5.7) разрешима. При этом решение и(х,у) Е Ha(D) имеет вид
(1.5.11), где все функции fk, Дк Е Ha(D), к — 1,... ,п.
Доказательство. В силу леммы 1.5.1 общее решение (1.5.7) имеет вид
(1.5.11). Обозначим p(z) = (/Al + fn,..., fn + Дп)Т . Тогда в силу (1.5.11) р = Q~l ■ и, то есть граничное условие в (1.5.7) примет вид
p(z)r = Q~l4>(z) = (-01, - - -, Фп), z Е Г.
Здесь фк — скалярные комплексные функции. Таким образом, для каждого к = 1,..., п имеем задачу
fk(z) + fm(z) = Фк{г), z Так как по условию Замечание 1.5.2. В теореме 1.5.5 не утверждается единственность функции и(х, у). Единственность (с точностью до константы) в силу теоремы 1.4.3 будет иметь место, если a priori известно, что в равенстве (1.5.14) функции /а*(г), /щ(2) Е Ha(D), 0 < а < 1.

Рекомендуемые диссертации данного раздела

Время генерации: 0.503, запросов: 967