+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Интегральные многообразия и затягивание потери устойчивости

Интегральные многообразия и затягивание потери устойчивости
  • Автор:

    Щетинина, Екатерина Владимировна

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2005

  • Место защиты:

    Воронеж

  • Количество страниц:

    133 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"1 Ограниченные решения нелинейных систем 
1.2 Существование ограниченного на всей оси решения

1 Ограниченные решения нелинейных систем

1.1 Постановка задачи

1.2 Существование ограниченного на всей оси решения

1.3 Доказательство теоремы 1

1.3.1 Непрерывность функции Тк

1.3.2 Существование ограниченного решения

2 Интегральные многообразия быстро-медленных систем

2.1 Постановка задачи

2.2 Предположения. Обозначения

2.3 Доказательство Теоремы 2.1

2.3.1 Вспомогательные неравенства


2.3.2 Непрерывность Тк при £ = О
2.3.3 Существование медленного интегрального многообразия
2.3.4 Примеры
3 Асимптотические разложения

3.1 Доказательство Теоремы 3.1
3.1.1 Непрерывность Тд в £
3.1.2 Оценка погрешности
4 Гладкость интегрального многообразия
4.1 Существование производных первого порядка
4.1.1 Предположения
4.1.2 Вспомогательные неравенства
4.1.3 Непрерывность функции щ-Тк при £
4.1.4 Существование первой производной медленного
интегрального многообразия
4.2 Существование старших производных
4.2.1 Предположения
4.2.2 Вспомогательные неравенства
4.2.3 Гладкость функции а(у, е)
4.2.4 Гладкость интегрального многообразия
5 Маятник Циглера

Актуальность работы.
Быстро-медленные системы обыкновенных дифференциальных уравнений используются для моделирования процессов различной природы. В общем случае автономную разнотемповую систему можно записать как в быстро-медленном виде
так, с помощью замены переменных £ = т/е, ив сингулярно возмущенном виде
Основы теории сингулярных возмущений были заложены в работах Тихонова А. Н. Наиболее широкое распространение получил метод пограничных функций Васильевой-Тихонова. Дальнейшее развитие теория получила в работах Андронова А. А., Аносова Д. В., Боголюбова.
Н. Н., Бутузова В. Ф., Васильевой А. Б., Вишика. М. И., Крейна С. Г., Крылова Н. М., Куриной Г. А., Ломова С. А., Люстерника Л. А., Мартыненко Ю. Г., Маслова В. П., Митропольского Ю. А., Мищенко
— = е/(х,у,е),
йу , ч
— = д(х,у,е),
(0.1)
(0.2)
£~Г = 9{х,У,е)-

\г (в, ФаЛ{у, Ь, е), /г(я, ФзЛ(у, /г, г), е), а(Ф3^(у, /г, е), е), гг) -2 (в, Фв^(у,Ь,,£),Ц8, Фб11{у,}1,е),£),а(Ф^(у,}1, е),е),е) 11+
+ ||а(Фм(г/, /г, е), е) - а(Ф»,((г/>е).е)
С?5 <

Н-оо
У е“(е ) (еО(1 + еДГ + е7У2)(||Ф^(т/,/г.,е) - Ф5,г(р, Л,е)|| + *
+е£>(1 + 7^)||Л(в, Фв,<(у, Н,е),е) - /г(з,Фв>{(у,Л,,е),е)||)+ + (1 + е£>)||а(Ф^(у,/1,е),е) - а(Фа,((у, /г, е), е) ||) йв <
+00
< У eJL^±Л (е(Д5 + г/)ЦФ8,4(у,/1,е) - Ф5,4(у,/г,е)11 + +еЛ(1 + 7У)р(/г, Я) + (1 + е£>)р(а, а)) с£в <

л/2^
е (2)5 + у) 1 +
(е!)(1 + ЛГ)р(/1, /г) + (1 + е£>)р(а, а))
+оо
р(Л, Я) у ^еем(1+еС)(*-0 -jdsK
£у/тт 2е^2а(1 + еЛ)
+ £(1 + Л0 +
£>(1 + ЛГ) + 3(£>5 +
3(2)5 +
1 +е£ р(/г,Я).
1 +
Если мы выберем е достаточно малым, что справедливо неравенство
ЕрП
у/2а
2е^(1+еП) ^(1 + ЛГ)+3(^+/)| +
1 - 2ее^/2аО V ч* ' ' 1 + еС
3(2)5 +у)
+ 2>(1 + ЛГ) +
1 + гг£
< 1,
(2.38)

Рекомендуемые диссертации данного раздела

Время генерации: 0.176, запросов: 967