+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Интегральные уравнения Винера-Хопфа с вырождающимся символом

Интегральные уравнения Винера-Хопфа с вырождающимся символом
  • Автор:

    Бабаян, Арменак Оганесович

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    1984

  • Место защиты:

    Ереван

  • Количество страниц:

    105 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"ГЛАВА I. Введение. Формулировка результатов 
§ 2. Основные определения и формулировка результа

ГЛАВА I. Введение. Формулировка результатов

§ I. Введение

§ 2. Основные определения и формулировка результа


ГЛАВА 2. Факторизация символа и некоторые вспомогатель

ные результаты

§ I. Факторизация символа

§ 2. Некоторые вспомогательные предложения об аналитических функциях

ГЛАВА 3. Случай, когда Л/п (о/1-о(2)

§ I. Доказательство теоремы 1,2,3

§ 2. Случай симметрического ядра


ГЛАВА 4. Случай, когда Лт (о/о(2) ф О
§ I. Лт/о^-оу >0
§ 2. Лгг(Ы1-0(2') <0
ЛИТЕРАТУРА

ГЛАВА I ВВЕДЕНИЕ. ФОРМУЛИРОВКА РЕЗУЛЬТАТОВ.
§ I. ВВЕДЕНИЕ
1°. В работе рассматривается уравнение
(рН)~ к(1-$)(р($) с/5 = , ±>0 (I)

Здесь (—00)0°) , ^ €. / ^(п;оо) » {, решение (~р
ищется в том же классе 1Т(0,Ьо) , которому принадлежит функция ^ . Исследуется также соответствующее однородное уравнение:

(р(±)- к(-Ь-5)ср(5)с15 = 0 ~к>0 (2)
Уравнения такого типа впервые возникли в астрофизике. Для определения, например, интенсивности излучения фотосферы звезды в случае, когда коэффициент поглощения лучистой энергии не зависит от частоты, получаем интегральное уравнение Милна:
5(г)-^У£(,(|Т-Т'|]5(гОс/т =0 х>о>

-хЪ , ,
е М

а 5(Т) - искомая функция, через которую выражается интенсивность излучения. При наличии источников излучения приходим к неоднородному уравнению

Ь(т)-± | Е;(|т-т'|)5(тОс1г' =

В 1931 г. в работе Н.Винера и Э.Хопфа [8] было рассмотрено однородное уравнение (2) при условии, что ядро этого уравнения

Функции (г;) и непрерывны в {0j ,
а так как Ф + ( ^) - преобразование Фурье функции из [I (о,*о) ,
} то |ф+("'у)с/^е^(-0а/00) . Следовательно.,
< а.
для почти всех X е Я существует конечный предел С0+(Х±1у) при 1| -—5- о . Аналогично 0)~(Х-1у) имеет предел при ^ => 0 п>в> на . Оценим разность С0+(Х+Су)~(ХГ(х - с
при р
Пусть сначала X > О . Если (Х^> О такое число, для которого
(л)Чх+1у)~Сд~(Х'С*у) С при у > О , то, используя
аналитичность _П_+(г) в Т)± > получит/ следующее:
аЛ+бу
и) (х + су) -и) (X- ^ _Л_ + (2) с|г- -+• | +
- ) Х1-(г)с1г- -П_-Сг)с1г= Цл+(?+1у}-Д-(?-г!))]^
ё аГ^ а1
-+[сХ('а, + (д/)- ь)~(аг^)]-

Рассмотрим сначала ] при Х>0;^->0.

С помощью рассуждений, аналогичных тем, в результате которых было доказано, что cJ+(x+iij) имеет предел для почти всехХ при и —> О , получим, что
х l2(droj
Цп+и+1а>--а.(м^]с1|
где pèZL (с/, оо) для произвольного с! > О . Следовательно, для любой функции y(t)e.c^° такой, что supp ус(О^) имеем:

Рекомендуемые диссертации данного раздела

Время генерации: 0.119, запросов: 967