+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Дифференциальные уравнения на геометрических графах с особенностями в коэффициентах

Дифференциальные уравнения на геометрических графах с особенностями в коэффициентах
  • Автор:

    Глотов, Николай Владимирович

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2007

  • Место защиты:

    Воронеж

  • Количество страниц:

    93 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1. Основной объект исследования 
1.4 Случай единичной длины рёбер геометрического графа


1 Описание решений волнового уравнения на конечном и ограниченном геометрическом графе при условиях трансмиссии типа "жидкого" трения

1.1. Основной объект исследования


1.2 Разностное уравнение, сводящее задачу (1.1.1)—(1.1.3) к набору задач о распространении граничных режимов

1.3. Существование решения

1.4 Случай единичной длины рёбер геометрического графа

1.5. О стабилизации решений задачи (1.1.1)-(1.1.3)


2 Решение смешанной задачи для волнового уравнения на графе-звезде при условии, описывающем трение в узле

2.1. Постановка задачи

2.2 Единственность решения

2.3. Сведение задачи (2.1.1) к задачам на отрезке

2.4 Решение задачи (2.3.4)


2.5. Вырождение решения задачи (2.3.4) при Ь >

Литература
Настоящая работа посвящена исследованию уравнения гиперболического тина
иХх (з<) £)=щ{х^) {х 6 Д(Г), г > 0). (1)
с условиями трансмиссии, моделирующими жидкое трение в узлах геометрического графа:
У и^(х,г) = к(х)щ{х,1) (х € J{T), * > 0), (2)
ЬбИ(х)
где Г - геометрический граф, J(T) - вершины Г, Д(Г) = Г ДГ) -множество, компоненты связности которого есть рёбра Г (геометрический граф и дифференцирование по х 6 Г понимается в соответствии с [20]). Система соотношений (1), (2) формально может быть записана в едином виде:
ихх(х, £) = ии(х, Ь) + ^ Щ)5(х - £)щ(х,1) (яеГ, £>0),
£еУ(Г)
где 8(х—£) - дельта-функция с носителем в точке £ 6 J{Г). Таким образом, система (1), (2) может рассматриваться как гиперболическое уравнения на геометрическом графе с особенностями (типа дельта-функций) в коэффициенте при младшей производной щ.
Основная цель - получение конечного описания решения указанного
образом, база индукции нами уже доказана. Предположим теперь, что (1.4.20) выполнено для т = {1,2 п}, где п - некоторое натуральное число. Докажем истинность (1.4.20) для т = п + 1, то есть истинность утверждения
г/(4 + п + 1) = ап+д(г) + апд(4 + 1).
1/(4 + п + 1) = аи/(4 + тг) + 71/(4 + п — 1) + 47р(4 + п). Учитывая предположение индукции, г/(4+п+1) = а(апр(4)+а„_1р(4+ 1))+Ч(ап-1Ш + ап-29& + 1)) + Ед{1+п) = (аа„ + 7ап_1)р(4) + (а:ап_1 + 7а„_2)<г(4 +1) + Ед(Ь + п).
Рассмотрим сначала случай п — 2р, р е N. В этом случае р(4 + п) = д(4 + 2р) — д(4). Проверим верность равенств а2р+1 = сгагр + 7а2р-1 + 47 И й2р 1 'УО‘2р—2'
®&2р + 7а2р-1 +
=ЕЕ Ч«-2*+л>2,+2-“+£(£ С4-2^Д+V'’-“+в-
&=1 7=0 &=1 .7
Преобразуем сначала 7а2р_1 :
7«2р-1 = Ё(Ёа+.-21.+,У+>2’’-“ = =
/г=1 ;=0 А:=1 7
р+1 к
=Е(Ес^-шА>г,-2Н2к=2 7
Подставим теперь полученное представление для 7а2р-1 в формулу для аа2р + 7°2р-1 + 47 :
оогр + 7®2р-1 +

Рекомендуемые диссертации данного раздела

Время генерации: 0.110, запросов: 967