+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Глобальная разрешимость одномерных задач протекания для систем уравнений движения вязкого газа с негладкими данными

Глобальная разрешимость одномерных задач протекания для систем уравнений движения вязкого газа с негладкими данными
  • Автор:

    Казенкин, Константин Олегович

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2002

  • Место защиты:

    Москва

  • Количество страниц:

    114 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
Глава 1. Задача о заполнении объёма вязким 
1.1. Постановка задачи и формулировка основных результатов


СОДЕРЖАНИЕ
Введение

Глава 1. Задача о заполнении объёма вязким

баротропным газом

1.1. Постановка задачи и формулировка основных результатов

1.2. Построение приближённых решений

1.3. Априорные оценки приближённых решений

1.4. Предельный переход

1.5. Единственность обобщённого решения

Глава 2. Задача о протекании вязкого баротропного газа

2.1. Постановка задачи и формулировка основных результатов


2.2. Построение приближённых решений
2.3. Априорные оценки приближённых решений
2.4. Предельный переход
Глава 3. Задача об одномерном движении вязкого
теплопроводного газа
3.1. Постановка задачи и формулировка основных результатов
3.2. Полудискретная параболическая задача
3.3. Полудискретный метод и доказательство теоремы существования
3.4. Предельный переход
3.5. Доказательство теоремы единственности

Глава 4. Одномерная задача о заполнении объёма вязким
теплопроводным газом
4.1. Постановка задачи и формулировка основных результатов
4.2. Построение приближённых решений
4.3. Априорные оценки приближённых решений
4.4. Предельный переход
Литература
ВВЕДЕНИЕ
Одним из важнейших классов задач в теории дифференциальных уравнений и в приложениях являются краевые задачи механики сплошной среды. С математической точки зрения они вызывают большой интерес разнообразием вариантов постановок задач и методов их исследования. К настоящему времени получен ряд важных результатов по разрешимости задач механики сплошной среды и методам их решения, однако многие вопросы, особенно в неклассической нелинейной постановке, остаются не решёнными, в связи с чем эти проблемы не утратили своей актуальности.
Среди математических задач механики сплошной среды интересный класс представляют одномерные задачи для системы уравнений Навье-Стокса движения вязкой сжимаемой среды (газа или жидкости). Задачи, описывающие протекание, то есть движение переменных масс через различные объёмы, каналы и т. д. являются весьма сложными и ещё не достаточно изученными. Как известно [8], [33], [34], в лагранжевых массовых координатах [х, V) движение вязкого сжимаемого баротропного газа (жидкости) описывается системой квазилинейных дифференциальных уравнений
дт) ди дЬ дх ’ ди да

где 7^ = шт{7, Тэ+1 — Тj}. Пользуясь оценками
вытекающими из леммы 1.3.5, получаем неравенство
где Як = У (х^+1,Ху) х (Т;+1 + 7 — ‘У],Ту+1 +7). В силу оценок (1.3.13),
имеем неравенство ^ К2'У1^2 (\Л.^и1г\дь +1), ИЗ КОТОРОГО
следует доказываемая оценка.
Предложение 1.3.4. Справедлива оценка (1.3.2).
Доказательство. Из формулы (1.3.14) для п. в. х £ (xj,X - 5) и всех Ь £ [£д(аг),Т], 0 ^ у < п следует равенство
А[г]н + Д5ЦЛ] - А[г!к] = А[г)* + А6г]*] - Л[?7*] -- (ДгЛ)[^ + Д5Г]н] + (Д5Л)[ц* + А$Г1*} + 1^(р[г]к + Д5Г}к] - р[г]Н}) +
где (Д<5Л)[-ш](жД) = (Д5Л)(-ш(аД),ж), (А5р)[и)](х,Ь) = (А6р)(ы(х,г),х),
О ^Кп
условия Ау и неравенств
ЦА^^Цхдо.г) <7 Уагис, с = а,Ъ,
[и,1 ]
ПАк(^) < (те85^)1/2рг.Л||д, < К171/
+ 1к(А6р)(пН + А6г)к] + 1кА5ак + ^ + ф%, (1.3.18)
Ф(е+<5)
(сс+<5)

Рекомендуемые диссертации данного раздела

Время генерации: 0.145, запросов: 967