+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Вопросы существования решений и их асимптотика для нелинейных эволюционных уравнений

Вопросы существования решений и их асимптотика для нелинейных эволюционных уравнений
  • Автор:

    Комаров, Михаил Владиславович

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2012

  • Место защиты:

    Москва

  • Количество страниц:

    114 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1	Постановка задачи, обозначения 
1.3	Локальное по времени существование решения


Оглавление
Введение
1 Периодическая задача для уравнения, содержащего квадратичную и кубическую нелинейности

1.1 Постановка задачи, обозначения

1.2 Числовые неравенства

1.3 Локальное по времени существование решения

1.3.1 Случай отсутствия сильной диссипации

1.3.2 Случай сильной диссипации. Сглаживание решения

1.4 Существование решения в целом по времени и асимптотика

1.4.1 Случай малых начальных данных

1.4.2 Случай немалых начальных данных


1.5 Осциллирующая асимптотика
2 Периодическая задача для обобщенного уравнения Колмогорова-Петровского-Пискунова
2.1 Постановка задачи, обозначения
2.2 Предварительные оценки
2.3 Локальное по времени существование решения
2.4 Существование решения в целом по времени

2.5 Асимптотика решения периодической задачи в случае малых
начальных данных
3 Периодическая задача для комплексного уравнения
Ландау-Гинзбурга
3.1 Постановка задачи, обозначения
3.2 Предварительные оценки
3.3 Существование решения в целом по времени и асимптотика
Заключение
Роль линейного, нелинейного операторов и начальных данных в
теоремах существования
Литература

Введение
Теория нелинейных уравнений, описывающих различные физические эффекты. является весьма, важной и актуальной. Наиболее интересными задачами в этой теории являются вопросы о разрушении решений за конечное время, глобальное во времени существование решений и их асимптотика при больших временах. Сложность получения асимптотики связана, во-первых, с необходимостью первоначального доказательства существования решения в целом по времени, и во-вторых, с получением некоторого количества дополнительных априорных оценок, учитывающих тип нелинейности в задаче.
Интерес к периодическим задачам возникает по нескольким причинам. Такого рода задачи можно рассматривать, например, в случае, когда среда обладает периодической структурой: кристаллы, клеточная ткань, композитные материалы. Асимптотика решений подобных задач имеет особенности, отличающие ее от асимптотики решений задачи Коши (см., например, [1-3]). Периодические по пространству решения могут быть использованы для описания поведения при больших временах нестабильных волн, которые предшествуют состоянию турбулентности (см. [4]).
Периодические задачи для известных нелинейных уравнений исследовались в большом числе работ. Так, например, в работе [5] рассматривается

2. Если, сверх того, и — 0, то
II jV(«) —Л/Ь(«)IIа- <С\и - «о||ч(|«о| + II« - «оНл. + М2 + II« - «ollftj)
где щ = щ(ф), Л/о (гг) — нулевые коэффициенты Фурье функций и(ф,х) и ф[(и) соответственно.
Доказательство. 1. Из определения оператора Л/", оценки его коэффициентов (1.3) и неравенства (а + Ь)2 2(а2 + Ь2), а, Ь Є К, последовательно получаем
||Л/"(«') M(v)\h* — 1 Ap,q(up~quq vp-qvq) +

J2(p)2s Еа>л(с
)“f" 'Vp—qiUq q) )

V Я

Рекомендуемые диссертации данного раздела

Время генерации: 0.240, запросов: 967