+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Асимптотика автомодельных решений диссипативных задач газовой динамики

Асимптотика автомодельных решений диссипативных задач газовой динамики
  • Автор:

    Троянова, Ирина Михайловна

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2010

  • Место защиты:

    Обнинск

  • Количество страниц:

    143 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1. Формальная схема асимптотики 
§2. Асимптотика решения задачи о поршне в случае цилиндрической



Оглавление
Введение

Глава 1. Задача о поршне


§1. Формальная схема построения асимптотики решения задачи о поршне в случае одномерных течений с общей геометрией

1.1. Формальная схема асимптотики

1.2. Схема алгоритма асимптотики

1.3. Вырожденная задача

§2. Асимптотика решения задачи о поршне в случае цилиндрической

симметрии (и = 1)

2.1. Автомодельная задача в тихоновской форме


2.2. Формальная схема алгоритма асимптотики
2.3. Главные члены асимптотики
2.4. Асимптотика старшего порядка
2.5. Обоснование асимптотики
§3. Асимптотика решения автомодельной задачи о поршне (при а - 1/2) в
случае общей геометрии течения
3.1. Нулевое приближение. Регулярная часть разложения
3.1.1. Сфера Пуанкаре
3.1.2. Изучение изоклин
3.1.3. Оценка V
3.1.4. Оценкауо
3.2. Нулевое приближение. Сингулярная часть разложения
3.3. Условие устойчивости на ударной волне
3.4. Члены высшего порядка
Глава 2. Задача о точечном взрыве в случае цилиндрической симметрии
§1. Приведение задачи к тихоновской форме
§2. Формальная схема алгоритма асимптотики
§3. Обоснование алгоритма асимптотики
3.1. Главные члены асимптотики
3.2. Асимптотика старшего порядка
3.3. Оценка невязки
§4. Обоснование асимптотики
Приложение
§1. Асимптотика решения сингулярно возмущенной начальной задачи
§2. Условная устойчивость
§3. Асимптотика краевой задачи
§4. Теорема существования решения начальной задачи на бесконечности (теорема Хоппенстеда)
Заключение
Список литературы

Введение
Физико-математические модели многих процессов основаны на системе уравнений газовой динамики с учетом различных физических эффектов. Газодинамическое движение в них играет важную, а зачастую и определяющую роль. Уравнения газовой динамики - это математическое выражение основных законов сохранения (массы, импульса и энергии). Сами по себе уравнения газовой динамики не линейны. Получено много важных результатов в отдельных разделах газовой динамики, но, тем не менее, общих методов решения газодинамических задач в настоящее время не существует, нет также доказательств единственности решения в общем случае. Это объясняется сложностью уравнений газовой динамики и, прежде всего, их нелинейностью, так как давление, плотность, температура и скорость должны быть определены из решения нелинейной системы уравнений в частных производных. В то же время именно нелинейность порождает многие эффекты, к примеру, ударные волны и волны разрежения, с которыми приходится считаться в практически важных случаях. Задача о поршне и задача о точечном взрыве являются примерами нелинейных задач, в которых возникает ударная волна.
Для понимания сути явлений значительную помощь оказывают различного рода упрощенные модели, в том числе основанные на уравнениях, допускающих наличие автомодельных решений. Автомодельные решения могут играть существенную роль не только в анализе отдельных качественных сторон явлений, но и в исследованиях принципиального характера, позволяющих установить общие закономерности процессов на определенной стадии их развития.
Препятствием на пути получения точных аналитических решений является также ряд существенных особенностей в задачах прикладной математики, таких как нелинейности, изменяющиеся коэффициенты, границы

(іп02/>)) -(г-ООпУ+п/Іи-і)] =её1уър. (1.4Ь)
2.2. Формальная схема алгоритма асимптотики Асимптотика задачи (1.3)(1.3Ь)(1.3с) ищется согласно [7][8] в виде разложения по степеням є для X = (ху,у) на полуоси _у0<у<оо в предположении разрыва (ударной волны) вырожденного решения в точке у = 1 > у0, то есть в виде
Х = Х + ПХ,Х(у, є) = X Хк(у)Ек, ПХ(гі,е) = X ПкХ{Ч)Ек,Г1 = 1, (1.5)
к-0 к=О Е
где Г1кХ(т]) = | ПкХ(г/) при Г] < 0, П'к X(р) при р > о}.
Подставляя (1.5) в (1.3), получаем формальное равенство
(ІУУ СІПУ „/ - с/г СІЛУ г і Т} гту
Є — + —— = Р[Х,у,е) + ПР,е— + —— = є/(Х,у) + єІІ/, ау ар ау ар
теЛР = р(Х(у0 + єр,є) + ПХ(р,є),у0 + єр,є)-р(х(у0+єр,є),у0 + єр,є),
Л/ = , которое разобьем на две подсистемы: регулярную
'А-М <*>
и сингулярную
с!Пу СІПу „
—— = ЛР,—-=єЛ/, (Ь)
ат] ат]
при этом в точке у = 1 должны выполняться условия сопряжения
Х' + П-Х I =Хг + П+х , (А)
1*7=0 1»7

Х‘' = Х(1 - 0), Хг = X (1 + 0), х‘ = 2 £кХ[, Хг = £ Екхгк. (Ао)
к=] к
Коэффициенты регулярного разложения X = (иуг) находятся из следующих систем для нулевого и к - го приближений:

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Нелинейное уравнение диффузии с солитонными свойствами Ищенко, Валентина Михайловна 2005
Аттракторы уравнений Навье-Стокса Ильин, Алексей Андреевич 2005
Задача Дирихле и видоизмененные задачи для уравнений смешанного типа с характеристическим вырождением Трегубова (Сулейманова), Альбина Хакимьяновна 2009
Время генерации: 0.094, запросов: 967