+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Экстремальные задачи в теории целых функций

Экстремальные задачи в теории целых функций
  • Автор:

    Попов, Антон Юрьевич

  • Шифр специальности:

    01.01.01

  • Научная степень:

    Докторская

  • Год защиты:

    2004

  • Место защиты:

    Москва

  • Количество страниц:

    226 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1 Основные определения и обозначения 
1.2 Несколько вспомогательных результатов


1 Экстремальные задачи для канонических произведений и их приложения в теории аналитического продолжения

1.1 Основные определения и обозначения

1.2 Несколько вспомогательных результатов

1.3 Оценка снизу модуля канонического произведения


1.4 Максимальное значение индекса конденсации последовательностей с заданными шагом, верхней

и нижней плотностями

1.5 Двусторонние оценки функции А(а,(3, К)

1.6 Экстремальные задачи в теории аналитического продолжения


1.7 Наименьший возможный тип при порядке р < 1 канонических произведений с положительными нулями заданной верхней р-плотности
2 Экстремальные задачи в теории интерполирования значениями последовательных производных

2.1 Границы сходимости и единственности интерполяционных задач Абеля—Гончарова



2.2 Следствия из теорем 2.2 и 2.3. Примеры
2.3 О полноте редких подпоследовательностей систем функций вида f{n)(Xnz)
3 Плотные классы функций сравнения
3.1 Теорема о плотности множества функций сравне-

ния Y1 Лпгп, для которых lim (4+2^Л) = 1. •
71=0 п-*х>
3.2 Плотность в Л(С) класса функций сравнения, порождающих обобщённое преобразование Бореля, обратимое в интегральной форме
Список литературы

В диссертации решены несколько экстремальных задач, актуальных в теории целых функций. Они состоят в нахождении на том или ином классе функций, определяемом распределением своих нулей (глава 1) или распределением нулей последовательных производных (
глава 2), точной верхней или точной нижней грани некоторых асимптотических характеристик функций данного класса. Результаты главы 1 применяются для решения экстремальных задач в теории аналитического продолжения степенных Щ рядов и рядов экспонент. В связи с тем, что диссертационная работа связана с решением конкретных экстремальных задач, а не с общими методами их исследования, перейдём сразу к постановкам задач.
В главе 1 основным объектом исследования являются канонические произведения
с симметричными нулями {±ЛП}^=1, где Л = {Ап}^=1 - возрастающая последовательность положительных чисел, имеющая конечную верхнюю плотность
Интерес к функциям (1) обусловлен многочисленными их применениями в таких важных разделах комплексного анализа, как
(1)
0{) — Иш вир п/Хп
(2)

§1.2 Несколько вспомогательных результатов.

В этом параграфе доказывается, что индекс конденсации произвольной последовательности Л, имеющей конечную верхнюю плотность, равен величине (5(A) и, как следствие, неотрицателен (теорема 1.1). Совпадение величин <5(А) и <5(А) показывает, что индекс конденсации позволяет дать оценку снизу модуля канонического произведения (1.1.5) на действительной оси
L{x) > р{х) exp (-(5(A) + е)|ж|) Ve > 0 /|ж| > ж0(А, е),
которая неулучшаема в том смысле, что постоянную 5(A) в ней нельзя заменить меньшей.
Выводится также интегральное представление функции F(x) = In L(x), ж € Ж, которое станет в §1.3 и §1.4 одним из основных инструментов получения оценок канонических произведений.
Лемма 1.1. При любом п € N справедливо равенство

к=1 кфп
, У

(1.2.1)
Доказательство. При любом п € N имеет место представление2
(9 СЮ
1-£)П
п/ I

'-к
из которого получаем
9 г
*'м = -*П
п к=1 кфп
-5.
+ 1-

^к^п

(1.2.2)
2Там, где это не вызовет недоразумений, индекс Л, показывающий зависимость функции Ь(г) от последовательности А, будет опускаться.

Рекомендуемые диссертации данного раздела

Время генерации: 0.163, запросов: 967