+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

теоремы типа Фрагмена-Линделефа для пространственных отображений с ограниченным искажением и их приложения

теоремы типа Фрагмена-Линделефа для пространственных отображений с ограниченным искажением и их приложения
  • Автор:

    Ботвинник, Владимир Абрамович

  • Шифр специальности:

    01.01.01

  • Научная степень:

    Кандидатская

  • Год защиты:

    1983

  • Место защиты:

    Волгоград

  • Количество страниц:

    96 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"ГЛАВА I. ПОДГОТОВИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ . 1% 
§ I. Основная частота и ее N - средние

ГЛАВА I. ПОДГОТОВИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ . 1%

§ I. Основная частота и ее N - средние

§ 2. Оценки основной частоты

§ 3. Второе определение основной частоты

Глава II. АНАЛОГИ ПРИНЦИПА СЕН-ВЕНАНА ДЛЯ

П -МЕРНЫХ ОТОБРАЖЕНИЙ С ОГРАНИЧЕННЫМ ИСКАЖЕНИЕМ •

§ I. Подготовительные леммы об отображениях 3

с ограниченным искажением.

§ 2. Аналоги принципа Сен-Венана для

компоненты вектор-функции

§ 3. Аналог принципа Сен-Венана для


функции Ъ
Глава III. ТЕОРЕМЫ ТИПА ФРАШЕНА-ЛИЦДЕША И
Ж ПРИЛОЖЕНИЯ
§ I. Теоремы типа Шрагмена-Линделёфа
для компоненты вектор-функции А 6
§ 2. Специальный вариант принципа
Фрагмена-Линделёфа
§ 3. Теоремы Фрагмена-Линделёфа для
модуля вектор-функции I
§ 4. Теоремы типа Альфорса и Вимана ■
ЛИТЕРАТУРА

Общая характеристика работы
Актуальность темы. Квазиконформные отображения, как обобщения классических конформных отображений, были введены в конце двадцатых годов Г.Гречем и М.А.Лаврентьевым. В работах Л.Альфорса, П.П.Белинского, Л.Берса, И.Н.Векуа, Л.И.Вол-ковыского, Ю.Вяйсяля, В.А.Зорича, С.Л.Крушкаля, И.Н.Митюка,
И.Н.Лесина, Ю.Г.Решетняка, Г.Д.Суворова, Б.В.Шабата были заложены основы теории квазиконформных отображений, выявлены ее многочисленные связи с другими областями математики ( дифференциальные и интегральные уравнения, геометрия, топология) , а также с приложениями ( газовая динамика, теория упругости).
В настоящее время теория квазиконформных отображений представляет собой один из наиболее содержательных и интенсивно развивающихся разделов теории функций.
Цель работы. Диссертационная работа посвящена изучению произвольных, вообще говоря, неоднолистных квазиконформных отображений - так называемых отображений с ограниченным искажением. Целью работы является распространение на многомерный случай хорошо известного в теории аналитических функций комплексного переменного принципа фрагмена-Линделёфа.

Методика исследования базируется на широком применении внешних дифференциальных форм* специальных оценках интеграла Дирихле и оценках типа неравенства Пуанкаре для финитных функций. Главный инструмент исследования - основная частота открытых множеств и ее А/ -средние, техника использования которых в теории отображений с ограниченным искажением была разработана В.М.Миклюковым.
Научная новизна. В работе впервые получены оценки' интеграла Дирихле для пространственных отображений с ограниченным искажением, являющиеся аналогами хорошо известного в теории: упругости принципа Сен-Венана. С их использованием доказаны теоремы типа шрагмена-Линделёфа, Альфорса и Вимана, уточняющие соответствующие результаты В.М.Миклюкова, установленные другим:методом. Все основные результаты, кроме высказываний, приведенных для иллюстрации действенности: общих методов, являются новыми.
Практическая ценность. Результаты работы носят теоретический характер и могут быть использованы при дальнейшем исследовании пространственных отображений с ограниченным искажением.
Апробация работы. Основные результаты диссертации опубликованы в работах автора [5]-Ш и докладывались на У1,
УП и УШ Донецких коллоквиумах по теории квазиконформных • отображений и ее обобщениям в 1978, 1980 и 1982 годах, а также на семинарах по теории, функций при Московском и Волгоградском университетах, Институте прикладной математики и механики АН УССР.
Структура работы. Диссертация состоит из введения и трех глав и изложена на 95 страницах машинописного текста.

типссх *
о=>
тогда
1 = 0.
Остановимся на частном случае теоремы 2.2. Пусть область X) является конусом, то есть инвариантна при растяжениях , где К? 0 - произвольно. В этом случае у|(и
и, следовательно, справедливо утверждение. Следствие 2.6. Пусть X) в условиях теоремы 2.2 - конус. Тогда имеет место неравенство

Е^(0-)-Е, (2.У6)

уМ(1)ПЬиМ))
§ 3. Аналог принципа Сен-Венана для функции Ъ = ип 11 |.
В этом параграфе мы докажем теоремы аналогичные теоремам 2.1 и 2.2 предыдущего параграфа этой главы.
3.1. Пусть В-Я" - область типа полуцилиндра и пусть н-МЯ . Справедливо высказывание
ТЕОРЕМА 3.1. Пусть / - отображение с ограниченным искажением, осуществляемое вектор-функцией Ах)=(Ьоо, /г(Х), ...,У?(Х)/ , не обращающейся в ноль всюду вХ) • Предположим, что для всякого и о выполнено
вип КЭСг) = 0 С5

Рекомендуемые диссертации данного раздела

Время генерации: 0.114, запросов: 967