+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Формулы Фейнмана для эволюционных уравнений над полем ρ-адических чисел

Формулы Фейнмана для эволюционных уравнений над полем ρ-адических чисел
  • Автор:

    Белошапка, Ольга Валериевна

  • Шифр специальности:

    01.01.01

  • Научная степень:

    Кандидатская

  • Год защиты:

    2010

  • Место защиты:

    Москва

  • Количество страниц:

    62 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
2 Формулы Фейнмана для уравнений типа теплопроводности с оператором Владимирова 
2.1 Предварительные сведения и обозначения


Оглавление
1 Введение

2 Формулы Фейнмана для уравнений типа теплопроводности с оператором Владимирова

2.1 Предварительные сведения и обозначения

2.2 Уравнения теплопроводности с оператором Владимирова

2.3 Формулы Троттера и Чернова как источники формул Фейнмана

2.4 Полугруппа, порождаемая оператором Владимирова

2.5 Формулы Фейнмана


3 Формулы Фейнмана-Каца для уравнений типа теплопроводности с оператором Владимирова

3.1 Построение меры типа винеровских

3.2 Стохастическая непрерывность


3.3 Формулы Фейнмана-Каца
4 Формулы Фейнмана для уравнения теплопроводности в пространстве последовательностей над полем р-адических чисел
4.1 Предварительные сведениия и обозначения

4.2 Построение счетно-аддитивной меры
на конфигурационном пространстве
4.3 Постановка задачи Когаи для уравнения теплопроводности
4.4 Существование и единственность решения
4.5 Формулы Фейнмана

Глава
Введение
Диссертация посвящена представлению решений некоторых эволю-ционнных уравнений над полем р-адических чисел с помощью формул Фейнмана и Фейнмана-Каца.
Формулой Фейнмана называется представление решения задачи Коши для эволюционного дифференциального или псевдодиффе-ренциального уравнения в виде предела интегралов по декартовым произведениям некоторого пространства при стремлении числа сомножителей к бесконечности.
Формулой Фейнмана-Каца называется представление решения той же задачи с помощью интеграла по траекториям в том же пространстве. При этом кратные интегралы в формуле Фейнмана совпадают с интегралами, являющимися конечнократными аппроксимациями интегралов по траекториям.
Связь между эволюционными уравнениями и интегрированием но пространству траекторий впервые явно была описана Р. Фейнманом. В его статье, опубликований в 1948 году решение уравнения Шредипгера представлено в виде функционального интеграла, определяемого как предел последовательности эффективно вычисляемых интегралов по конечному произведению конфигурационных пространств. Несмотря на то, что рассуждения Фейнмана

есть 5{А) — 1 при О Э А и 5(А) = О иначе. Тогда сдвиг меры будет определяться следующей формулой:
т,а,х(А) = х' А) = mt,n (А~ х),
для каждого х 6 Qp" и каждого борслевского А С Qp.
Замечание 7 По формуле 5, оператор свертки с функцией Ва, действующий на. область определения Dn С L2, совпадает с оператором свертки с мерой mt Лемма 3 Для любой, f Є интеграл „ f(y)m(t,$.dny)
сходится для всех х Є QP7Î и как функция от этой переменной является представителем, класса Ь2.
Доказательство.
□ Поскольку функция Ft, являющаяся плотностью меры mt, принадлежит классу Lі, то в силу формулы (И) раздела (20.19) книги [12|, применимой к локально компактной абелевой аддитивной группе, получаем
Ft* f = mt* f = f f(y)m{t, x, dny) є L2.

Замечание 8 В силу симметричности функции Ft т~ * f = т* /. (2.6)
В предыдущем пункте мы получили явные выражения для экспоненты от оператора Da в пространстве L2. Экспонента e^v^ от ограниченного оператора t > 0 описывается проще, так как может быть представлена рядом Тейлора ^tn(v-)n, сходящимся

Рекомендуемые диссертации данного раздела

Время генерации: 0.119, запросов: 967