+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Пространства Lp для полуконечных JBW-алгебр

Пространства Lp для полуконечных JBW-алгебр
  • Автор:

    Абдуллаев, Рустамбай Зайирович

  • Шифр специальности:

    01.01.01

  • Научная степень:

    Докторская

  • Год защиты:

    1984

  • Место защиты:

    Ташкент

  • Количество страниц:

    105 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"ГЛАВА I. ТОПОЛОГИЯ СХОДИМОСТИ ПО МЕРЕ 
§ 1.2 Веса и следы на Ш - алгебрах •

ГЛАВА I. ТОПОЛОГИЯ СХОДИМОСТИ ПО МЕРЕ

§1.1 Предварительные сведения

§ 1.2 Веса и следы на Ш - алгебрах •

§ 1.3 Топология сходимости по мере в 03*

алгебре тотально измеримых элементов •

ГЛАВА П. ПРОСТРАНСТВА ДЛЯ ПОЛУКОНЕЧНЫХ

СЛЕДОВ НА ЗШ“ - АЛГЕБРЕ

§ 2.1 Пространства для

§ 2.2 Пространства для •

ГЛАВА Ш. ТЕОРЕМА РАДОНА-НИКОДИМА И ПРОСТРАНСТВА ДЛЯ ВЕСОВ НА

ПОЛУКОНЕЧНОЙ Ш - АЛГЕБРЕ


§ 3.1 Теорема Радона-Никодима
§ 3.2 Пространства , ассоциированные с
локально конечным весом на полуконеч-. ных Ш - алгебрах
ЛИТЕРАТУРА

Теория интегрирования в алгебрах операторов возникла в связи с задачами математического обоснования квантовой механики и в настоящее время является интенсивно развивающейся частью теории алгебр операторов в гильбертовом пространстве.
Алгебраический подход к квантовой механике развивался преимущественно на г - алгебрах, введенных в работах Мюррея и фон Неймана [зэ] ,зэ] ,^41*} . *41 - алгебры - это слабо замкнутые комплексные * - алгебры операторов в гильбертовом пространстве, получившие также название алгебр фон Неймана. При таком подходе наблюдаемым соответствуют самосопряженные операторы, а состояниям положительные функционалы на алгебре фон Неймана, принимающие значение 1 на единичном операторе. Обычное ассоциативное произведение о.- V двух самосопряженных операторов 0_ и ^ не является, вообще говоря, самосопряженным оператором. Этому произведению, в отличие от йорданова произведения 0. ° 1) *‘г (э •о-') 5 трудно придать какой либо
физический смысл [24] . Поэтому рассмотрение алгебр фон Неймана вызвано не столько физическими соображениями, сколько соображениями технического характера. В настоящее время теория алгебр фон Неймана - это глубоко развитая теория с многочисленными приложениями, которой посвящено огромное количество работ. Подробнее см. монографии Сакаи ^45^ и Таке-

саки [бб]
В начале 50-х годов в работах Сигала [_48] и Диксмье 2Т была создана теория интегрирования относительно унитарно инвариантных мер на проекторах в полуко-нечных алгебрах фон Неймана. Важным достижением Сигала, обеспечивающим разнообразные приложения его теории, является реализация ^ и в виде пространств измеримых операторов, присоединенных к алгебре фон Неймана. Диксмье дал двойственное описание пространства ,
построенного по точному нормальному полуконечному следу на алгебре фон Неймана. Эти результаты были развиты многими авторами 42] , 1191 ,[го1
Различные виды сходимости в алгебре измеримых операторов были рассмотрены в работах Стайнспринга [_51~ , Санкарана |4б} ,47^ , Падманапхана ^43*] , Йедона [58] и других, вслед за которыми появились несколько работ
( [.37] , {401 -И . {Зб] ), в которых вводятся пространства относительно точного нормального полуконечного следа на алгебре фон Неймана. В частности, Нельсоном [40] было введено пространство ц и* р . как пополнение идеала интегрируемых элементов по 1л р -норме, и дана реализация этих пространств измеримыми операторами» Йедон [59] предложил другой подход. Пространства он ввел, как пространство измеримых операторов интегрируемых в р - ой степени. Им же было перенесено на эти пространства 1л р классическое утверждение двойственности. Японский математик Сайто [зб] рассмотрел пространства _, ^ для случая

вательность сходится по мере к элементу
(X. для ^ оо}
1,3*10. С л е д с т вие. Если последовательность
сходится по мере к элементу
о_е.ЦК,<» , то \0. \ сходится по мере К 1о.
Доказательство. Ясно (теор.Х.З.З

% V
( и/ ) )» что ОС .Из теоремы 1.3.8 (случай I ) следует, что МО^-МО^ , Т.е. №>1
по мере,

Рекомендуемые диссертации данного раздела

Время генерации: 0.135, запросов: 967