+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Методы нелинейного анализа в некоторых задачах дифференциальных и функционально-дифференциальных включений

Методы нелинейного анализа в некоторых задачах дифференциальных и функционально-дифференциальных включений
  • Автор:

    Басова, Марина Михайловна

  • Шифр специальности:

    01.01.01

  • Научная степень:

    Кандидатская

  • Год защиты:

    2007

  • Место защиты:

    Воронеж

  • Количество страниц:

    122 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1 Обозначения и некоторые сведения из анализа 
1.2 Основные понятия и определения многозначного анализа

1 Предварительные сведения

1.1 Обозначения и некоторые сведения из анализа

1.2 Основные понятия и определения многозначного анализа


2 Теория степени совпадения для композиции аппроксимируемых многозначных отображений

2.1 Топологическая степень композиции аппроксимируемых многозначных отображений

2.1.1 Степень в конечномерном пространстве

2.1.2 Степень в нормированном пространстве

2.2 Степень совпадения с линейным фредгольмовым оператором

2.2.1 Степень совпадения для компактной композиции многозначных отображений

2.2.2 Степень совпадения для уплотняющей композиции мультиотображений

3 Общие краевые задачи для функционально-дифферен-



циальных включений с запаздыванием
3.1 Краевая задача для функционально-дифференциальных включений с конечным запаздыванием
3.2 Краевая задача для функционально-дифференциальных включений с бесконечным запаздыванием
4 Оптимизация в импульсной управляемой системе
Литература

Применение геометрических и топологических методов анализа к исследованию различных вопросов теории дифференциальных уравнений имеет давнюю историю и восходит к именам А. Пуанкаре, J1. Брауэра, П.С. Александрова, Г. Хопфа, Ж. Лере, Ю. Шаудера. Дальнейшее развитие эти методы получили в трудах М.А. Красносельского,
H.A. Бобылева, Ю.Г. Борисовича, П.П. Забрейко, В.Г. Звягина, А.И. Перова, А.И. Поволоцкого, Б.Н. Садовского, Ю.И. Сапронова, В.В. Стрыгина, K. Deimling’a, L. Gorniewicz’a, J. Mawhin’a и многих других исследователей.
С помощью указанных методов оказалось возможным эффективно решать такие важные задачи теории дифференциальных уравнений, как вопросы существования решений, анализ топологической структуры множества решений, исследование непрерывной зависимости решений от начальных данных и параметров, условия существования периодических решений и другие проблемы.
Начиная со второй половины XX века эти методы энергично распространяются на теорию дифференциальных включений. Развитие теории дифференциальных включений связано с тем, что дифференциальные включения являются очень удобным аппаратом для описания

2.1.2 Степень в нормированном пространстве.
Распространим построенную теорию топологической степени на случай мультиполей в нормированном пространстве.
Пусть 14, 14,14-1 ~ открытые подмножества нормированных пространств, 11 - открытое ограниченное множество нормированного пространства Е.
Нам понадобится следующее утверждение.
Лемма 2.28 (см., например, [28]) Если К - компактное подмножество открытого множества V нормированного пространства, тогда существует компактное АЫЛ-пространство Я такое, что К С Я СУ.
Определение 2.29 Классом А{и,У) называется совокупность пн.св. мультиотображений Р1 : С/ -> К(У{) таких, что для любого конечномерного подпространства Еп С Е мультиотображение Еип£А(ип,У), гдеип = ип Еп.
Определение 2.30 Классом А(14-1,14) назовем совокупность пн. св. мультиотображений А: 14-1 —>■ К(у[) таких, что для любого сужения мультиотображения на Я С К'-1 - компактное АМЛ-пространство принадлежит классу А(Я,У().
Определение 2.31 Классом Ас(11, Е) назовем совокупность мультиотображений

Рекомендуемые диссертации данного раздела

Время генерации: 0.167, запросов: 967