+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Динамика рациональных отображений и их инварианты

Динамика рациональных отображений и их инварианты
  • Автор:

    Любич, Михаил Юрьевич

  • Шифр специальности:

    01.01.01

  • Научная степень:

    Кандидатская

  • Год защиты:

    1984

  • Место защиты:

    Ташкент

  • Количество страниц:

    141 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"Глава I. Почти периодические операторы и их приложения 
§ I. Обобщенная теория Перрона-Фробениуса

Глава I. Почти периодические операторы и их приложения

§ I. Обобщенная теория Перрона-Фробениуса

§ 2. Оператор Рюэля

§ 3. Предварительные сведения об итерациях рациональной функции

§ 4. Распределение корней уравнения ^гп'47

Глава 2. Эргодические свойства рациональных эндоморфизмов

§ I. Формула для энтропии

§ 2. Мера максимальной энтропии

§ 3. Лебегова мера множества Жюлиа

§ 4. Итерационный процесс Ньютона


Глава 3. Голоморфные семейства рациональных функций § I. Р -устойчивость рациональной функции общего
положения
§ 2. Поведение орбиты критической точки
§ 3. Типичные свойства неустойчивых функций.
Примеры
Литература

Итерации рациональной функции комплексного переменного были предметом глубоких исследований, проведенных в 18-20 годах настоящего столетия в работах Ж.Жюлиа и П.Фату. В них было изучено асимптотическое поведение траекторий рационального эндоморфизма, дана классификация периодических точек, детально описана динамика в их окрестности, введено некоторое совершенное инвариантное множество (множество Жюлиа), которое играет существенную роль для понимания глобальной динамики, изучена его структура. Эти результаты стимулировали исследование итерации аналитических отображений областей комплексной плоскости, предпринятое Ж.Воль-фом, А.Даннуа и другими авторами. Наиболее существенными публикациями, появившимися до 1975 года, в которых развивается эта тематика, являются следующие: статья К.Зигеля [Зб] , тесно связанная с его исследованиями по небесной механике, статья Г.Бройлина [20] , в которой получены первые эргодические результаты, относящиеся к рациональным эндоморфизмам сферы, статьи М.В.Якобсона [1б] , [I?] и Дж.Гуккенхеймера [25] , в которых построена символическая динамика на множестве Жюлиа для широкого класса полиномиальных отображений, цикл статей И.Бэйкера, в которых исследуются итерации целых функций,
В последние годы интерес к динамике рациональных отображений сферы Римана значительно возрос. Это связано, во-первых, с развитием эргодической теории и динамических систем в целом, что привело к новым постановкам задач. На первый план в теории итерации выходят эргодические вопросы, а также оценки и вычисление таких инвариантов, как топологическая и метрическая энтропия.

Эргодические свойства квадратичных отображений интенсивно исследуются Т.А.Сарымсаковым и его учениками. Возникла теория одномерных динамических систем, нашедшая широкое применение в гидродинамике, биологии и других областях. В частности, одна из экологических моделей описывается итерационным процессом Х^= 0<а,^Ч . Это преобразование,
простейшее по виду, порождает сложную динамическую систему, обнаруживающую стохастическое поведение для обширного множества значений параметра & (см.»например, [21] ). Мощным средством исследования этой системы является комплексификация (как по X , так и по параметру а ).
В самое последнее время удалось найти подход к некоторым гипотезам, сформулированным еще Ж.Жюлиа и П.Фату. Существенную роль здесь сыграла недавно обнаруженная Д.Сулливаном глубокая связь с теорией квазиконформных отображений и клейновых групп. Работа Д.Сулливана [37] (в которых дано полное описание динамики на дополнении к множеству Жюлиа), А.Дуади и Я.Г.Синая с соавторами [22] , [7] (в которых изучаются бифуркации в однопараметрическом семействе ^ Ы) , И/$(С , Д.Рюэля [35] }
в которой установлена вещественно аналитическая зависимость ха-усдорфовой размерности множества Жюлиа от параметров (в гиперболическом случае) и других авторов - демонстрируют новые возможности, открывшиеся в этой области.
В настоящей диссертации изучаются эргодические и метрические свойства рациональных эндоморфизмов сферы, характер зависимости динамики от параметров. Мы распространяем результат Г.Вройлина
[20] о распределении прообразов итераций полинома на произвольные рациональные функции. При этом методы работы [20] уже не-

КА^Нгг,)- М^)(С)1<£
( т = 1,3.}... )
Воспользовавшись теоремой о непрерывной зависимости корней алгебраического уравнения от его коэффициентов, найдем такое (Э > О , что если (£(^, ^) < (О , ТО точки из Г€к . считаемые с кратностью, можно так занумировать: . . ,
~ , что ( 1 = 4, .П* ) .Заметим,
далее, что
(Ак <р)М = Г А к (АкЧ>))((г)
= £ Т (А? у) (и.).
^ и,$4~е'1Г
Следовательно, при (£(2^) < (р имеем
|(А^КгО- САк*И'г)(гт)Н
1КАГуК20-(Ак»(с;)|<£

{т = .).
Предположим, наконец, что 2 € К - периодическая точка; ^^2 — 2 , ~Ь - кратность корня — 2 в уравнении
= 2 . Тогда I < Пр , так как в противном случае 2 - исключительная точка для ^ , а, следовательно, и для . Кратность корня = 2 в уравнении ^ = 2 равна . Найдем такое , что < £/4М
Пусть 2«: - отличные от 2 корни уравнения
{I - -1, ... J ) . Так как все 2^ - непериодические
точки, то найдется такое Ц > 0 , что если то

Рекомендуемые диссертации данного раздела

Время генерации: 0.111, запросов: 967