+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Оценка параметров электрофизических диагностических моделей объектов контроля с помощью вейвлет-преобразования сигналов

  • Автор:

    Барат, Вера Александровна

  • Шифр специальности:

    01.04.13

  • Научная степень:

    Кандидатская

  • Год защиты:

    2001

  • Место защиты:

    Москва

  • Количество страниц:

    174 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы


СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1. ПРОБЛЕМЫ ОЦЕНИВАНИЯ ПАРАМЕТРОВ ЭЛЕКТРОФИЗИЧЕСКИХ
МОДЕЛЕЙ ОБЪЕКТОВ КОНТРОЛЯ НА ОСНОВАНИИ
НЕСТАЦИОНАРНЫХ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ
1.1 Электрический сигнал как носитель диагностической информации в задачах неразрушающего контроля и технической диагностики
1.2 Задачи контроля и диагностики, приводящие к оценке параметров нестационарных электрических сигналов
1.3 Традиционные методы оценки параметров локальнонестационарных сигналов
1.4 Постановка задачи исследования диссертационной работы
2. РАЗРАБОТКА МЕТОДИКИ ПРИМЕНЕНИЯ ВЕЙВЛЕТ-
ПРЕОБРАЗОВАНИЯ ДЛЯ АНАЛИЗА НЕСТАЦИОНАРНЫХ
ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ
2.1 Основные принципы и методы вейвлет анализа
2.2 Непрерывное вейвлет-преобразование. Примеры
вейвлетообразующих функций
2.3 Разрешающая способность вейвлет-преобразования
2.4 Определение параметров модельных сигналов, характерных для -задач неразрушающего контроля и диагностики
2.5 Принципы построения алгоритма оценки параметров диагностических моделей на основании вейвлет-преобразования локально-нестационарных сигналов
2.6 Выводы
3. ПРОЕКТИРОВАНИЕ МЕТОДА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ
НАКЛОННЫХ ТРЕЩИН В ФЕРРОМАГНИТНЫХ КОНСТРУКЦИЯХ ПО
ЭЛЕКТРИЧЕСКИМ ДИАШОСТИЧЕСКИМ СИГНАЛАМ
3 Л Физические основы магнитной дефектоскопии
3.2 Методы построения электрофизических диагностических моделей в магнитной дефектоскопии
3.3 Определение параметров диагностической модели на основании пространственного и спектрального представления электрического сигнала
3.4 Определение параметров диагностической модели сигнала с помощью вейвлет-преобразования электрического сигнала
3.5 Оценка глубины и угла наклона дефекта
3.6 Описание алгоритма определения параметров наклонной трещины. Основные результаты
3.7 Выводы
4. РАЗРАБОТКА МЕТОДА ОБНАРУЖЕНИЯ ОБРЫВОВ ПРОВОЛОК
В СТАЛЬНЫХ КАНАТАХ
4.1 Задачи магнитной дефектоскопии стальных канатов
4.2 Построение электрофизической диагностической модели локального обрыва каната
4.3 Методика применения вейвлет-преобразования для выявления обрывов в стальных канатах
4.4 Применение алгоритма обнаружения обрывов проволок для дефектоскопа стальных канатов «Интрос»
4.5 Выводы
5. РАЗРАБОТКА И ИССЛЕДОВАНИЕ МЕТОДА ОБНАРУЖЕНИЯ
СВОБОДНЫХ И СЛАБОЗАКРЕПЛЕННЫХ ПРЕДМЕТОВ ВНУТРИ
КОРПУСА РЕАКТОРНОЙ УСТАНОВКИ
5.1 Характеристика диагностической системы обнаружения свободных и слабозакрепленных предметов
5.2 Теоретические основы анализа ударных сигналов. Построение диагностической модели

5.3 Характеристика электрического сигнала, зарегистрированного
при уд аре
5.4 Использование вейвлет-преобразования для определения параметров диагностической модели процесса удара
5.5 Описание алгоритма определения местоположения свободного предмета на основании вейвлет - преобразований сигналов
5.6 Выводы
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Приложение

нулевых моментов вейвлеты позволяют, игнорируя гладкие, регулярные фрагменты сигнала, анализировать импульсные составляющие.
В практических приложениях выбор анализирующего вейвлета является нетривиальной задачей. Критерием выбора является, как правило, характер анализируемого сигнала. Каждая вейвлетообразующая функция имеет характерные особенности во временном и частотном пространстве, поэтому при помощи различных функций можно выявить различные свойства сигнала. Разработанный математический аппарат вейвлет-преобразования позволяет конструировать большое количество вейвлет-функций в зависимости от условий поставленной задачи. Однако существует несколько классов универсальных функций, которые широко и успешно применяются для непрерывного вейвлет-преобразования сигналов.
Наиболее широко используемыми являются вейвлетообразующие функции, построенные на основе производных функции Гаусса:

' х1Л
(2.6) (®) = m(ico)m ехр

(2.7)
С возрастанием m увеличивается порядок нулевых моментов. Из этого семейства вейвлетов наиболее известен МНАТ вейвлет («мексиканская шляпа»), который является второй производной функции Гаусса (т=2). МНАТ вейвлет обладает узким энергетическим спектром и имеет два нулевых момента.
На основе функций Гаусса также строится DoG - вейвлет (Difference of Gaussians):
( х2Л ( х2Л
Л- -0.5ех{ Л-
V , У 8 у
(2.8) *К*)
(2л)

expf—) -exp(-2fc2)
(2.9)
Помимо вещественных вейвлетов, применяются и комплексные вейвлеты. Наиболее популярным из комплексных вейвлетов является вейвлет Морле (Мог1е1:):

Рекомендуемые диссертации данного раздела

Время генерации: 0.119, запросов: 967