+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Магнитопримесные состояния частицы в структурах различной размерности и их роль в кинетических явлениях в полупроводниках

Магнитопримесные состояния частицы в структурах различной размерности и их роль в кинетических явлениях в полупроводниках
  • Автор:

    Павлова, Татьяна Витальевна

  • Шифр специальности:

    01.04.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2006

  • Место защиты:

    Москва

  • Количество страниц:

    139 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
Глава 1. Объемные полупроводники с изотропным спектром носителей 
1.1 Волновые функции и спектр МП состояний

Список обозначений


Введение б

Глава 1. Объемные полупроводники с изотропным спектром носителей

1.1 Волновые функции и спектр МП состояний

1.2 Квантовый циклотронный резонанс на МП состояниях


1.3 Диффузия и проводимость электронов при рассеянии на центрах малого радиуса в квантующем магнитном поле

1.4 Краткие выводы и основные результаты Главы

Глава 2. Объемные полупроводники с анизотропным спектром


носителей
2.1 МП состояния в полупроводниках с резко анизотропным энергетическим спектром носителей
2.2 МП осцилляции поперечной и продольной проводимости в полупроводниках с резко анизотропным энергетическим спектром носителей
2.3 Экспериментальное наблюдение МП осцилляций статической проводимости
2.4 Краткие выводы и основные результаты Главы

Глава 3. Двумерные полупроводниковые структуры с изотропным спектром носителей
3.1 МП состояния электрона в двумерной структуре в приближении слабого перемешивания уровней Ландау центром
3.2 Основное МП состояние электрона на центре малого радиуса произвольной глубины в двумерной структуре
3.3 Экспериментальное наблюдение МП состояний на £)~-центрах
в двумерных структурах
3.4 Краткие выводы и основные результаты Главы
Глава 4. Двумерные полупроводниковые структуры с анизотропным спектром носителей
4.1 Волновая функция водородоподобного атома в двумерной структуре с анизотропной эффективной массой носителей
4.2 Энергия связи примесного атома в двумерной структуре с анизотропной эффективной массой носителей
4.3 Сравнение теоретических и экспериментальных данных для энергии связи В~ центра
4.4 Краткие выводы и основные результаты Главы
Заключение
Список литературы

Список обозначений
А — векторный потенциал магнитного поля; а — длина рассеяния электрона с нулевым моментом на центре;
Е± — коэффициент поперечной диффузии электронов;
Е — вектор напряженности электрического поля;
Н — вектор напряженности магнитного поля;
Ь — толщина квази-двумерного слоя;
I — орбитальный момент электрона;
/я — магнитная длина;
т — проекция момента электрона па направление магнитного поля;
те — масса электрона;
т* — эффективная масса электрона;
тц — продольная эффективная масса электрона;
— поперечная эффективная масса электрона;
N — номер зоны Ландау; пе — концентрация электронов; щ — концентрация примесей; г с — радиус действия потенциала центра;
Т — температура полупроводника;
II — потенциал примесного центра;

число рассеивателей в объеме. При нахождении тока от отдельного рассеивателя гамильтониан Н надо заменить на гамильтониан одноцентровой задачи. В получившемся из (1.23) выражении возьмем шпур по полной системе волновых функций одноцентровой задачи Фр(г). Без ограничения общности можно взять отдельный рассеиватель в начале координат [44]. Тогда формулу (1.23) можно переписать в виде:
где П{ — концентрация рассеивателей.
Учитывая симметрию одноцептровой задачи рассеяния электрона в магберем аксиально симметричной: А^ = pH/2, Аг = Ар = 0. Отметим, что формулы для кинетических коэффициентов [41, 42] получены в калибровке Ландау, в которой одним из чисел заполнения является координата центра циклотронного движения. Формула поперечной проводимости в аксиальносимметричной калибровке при слабом перемешивании уровней Ландау индивидуальным рассеивателем впервые была получена в работе [70]. Обобщение этой формулы на примесный потенциал произвольной глубины было дано в
Волновые функции Фр(г) задачи рассеяния электрона с энергией Ер на короткодействующем центре произвольной глубины в магнитном поле определяются формулами (1.1) и (1.6) и имеют вид:
(1.24)

нитном поле относительно направления Н, калибровку магнитного поля вы-
(71].
(п' + |т|)!
п'
fn-n' + Є

Рекомендуемые диссертации данного раздела

Время генерации: 0.099, запросов: 967