+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Некоторые модификации процедур стохастической аппроксимации

Некоторые модификации процедур стохастической аппроксимации
  • Автор:

    Никитенко, Валентин Гаврилович

  • Шифр специальности:

    01.01.09

  • Научная степень:

    Кандидатская

  • Год защиты:

    1984

  • Место защиты:

    Москва

  • Количество страниц:

    95 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
§ 2. Описание исследуемой процедуры и условий на функцию регрессии   
§ 3. Сходимость процедуры поиска минимума ,с оценивание „


I. Исследование процедуры Кифера-Вольфовица для нахождения точки экстремума функции регрессии с оцениванием 2п

второй производной


§ I. Основные леммы

§ 2. Описание исследуемой процедуры и условий на функцию регрессии

§ 3. Сходимость процедуры поиска минимума ,с оценивание „

ем второй производной

§ 4. Сходимость с вероятностью I последовательности


случайных величин Вп к значению второй производной функции регрессии в точке экстремума

§ 5. Скорость СХОДИМОСТИ процедуры И последовательное- оо

ти А а оценок второй производной р"(6)


§ 6. Асимптотические свойства процедуры с оцениванием
второй производной. Оптимальность процедуры
П. Процедуры поиска экстремума функции регрессии с исполь- 4п
зованием метода наименьших квадратов и сплайнов
§ I. Необходимые сведения
§ 2. Построение процедуры поиска экстремума функции
регрессии с использованием метода наименьших квадратов
§ 3. Сходимость процедуры с вероятностью I
§ 4. Поведение процедуры с использованием метода наименьших квадратов при невыпуклых функциях; регрес-

§ 5. Минимизация функции регрессии с использованием со
интерполяционных и сглаживающих сплайнов
§ 6. Некоторые результаты экспериментального исследо-
вания алгоритмов на ЭВМ
Заключение
Приложение
Литература

Настоящая работа посвящена исследованию процедур стохастической аппроксимации.
Постановка задачи. Цусть ( f (X, CV), Х$ IR., аХ€ 52} -семейство случайных величин, заданных на некотором вероятностном пространстве ( £2 г Lb, Р ) и отвечающих действительно-му параметру - соответствующее семейство функций распределения, функция F(X) - Flf (X, UX)
(здесь и далее М обозначает математическое ожидание) называется функцией регрессии. Задача состоит в решении уравнения
F(x) =ос (o.i)
при некотором фиксированном ol или в отыскании точек экстремумов функции F (X) . При этом предполагается, что функции распределения Н (у!*) неизвестны, но зато для всех значений параметра X (или для некоторого подмножества, на котором решается задача) можно производить независимые наблюдения случайной величины f (X) (мы часто будем опускать знак о?" при написании величины f(X, и?)» Это позволит упростить запись формул и не приведет к недоразумениям).
Многие идеи метода стохастической аппроксимации были обсуждены еще в 194I г. в статье Х.Хотеллинга /I/. Примерно в это же время появились родственные результаты и в работах других авторов. Но лишь Роббинс и Монро в 1951 г. /2/ в своей основополагающей работе дали формальную математическую трактовку этого вопроса. Они предложили метод решения уравнения (0.1) при довольно общих предположениях о функции F(x)

и функциях распределения Н (у /X) . Предложенная ими
процедура (под процедурой в стохастической аппроксимации понимается способ построения последовательности случайных величин, сходящихся к искомому значению в каком-ппибо вероятностном смысле) называется именем своих авторов. Она состоит в следующем: пусть Г(Х)> оС при Х> В и РСХ)^оС при X0 » тогда определим последовательность с.в. рекуррентной формулой
(0.2)
где - действительные числа, <гА ;> О , а - случайная величина с распределением Н( у/Хл)
В 1952 году Кифер и Вольфовиц /2/ предложили процедуру для нахождения точки максимума функции регрессии, которая записывается в виде
Х'-Х+а. Т" '

Лі*'
(0.3)
где и - положительные числа, а /„ и имеют распределения И (у / Х„+СК ) и Н Су / ХИ-С п.) соответственно.
Авторами процедур (0.2) и (0.3) были получены доказательства ИХ СХОДИМОСТИ (т.е. СХОДИМОСТИ Хм. к искомой точке) в среднеквадратичном. Впоследствии /3/ была доказана для них и сходимость почти наверное (п.н.). Свойства про-

§ 2. Построение процедуры поиска экстремума функции регрессии с использованием метода наименьших квадратов
Пусть функция регрессии Г(Х) - выпуклая дважды дифференцируемая функция на (Я . (2.1)
Предположим, что функция РГХ/) и случайные величины ■р(Х) таковы, что известна функция £ (Ь) , удовлетворяющая условию
веер [/р'Ьл + /Га)/*М(*)!V
(2.2)
Введем обозначения:
21. [Ш-НХ))](Я-Х;)
* = 21 Г А -Л, Г (2.3)

А- с
(2.4)
Здесь и далее знак означает суммирование по двум
индексам и п J , причем

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Структура связности графа Карпов, Дмитрий Валерьевич 2015
Влияние различных видов производственной функции и схем налогообложения на поведение инвестора Трубачева, Анна Евгеньевна 2006
Кооперация в дискретных линейно-квадратичных играх Тур, Анна Викторовна 2015
Время генерации: 0.077, запросов: 967