+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Задачи движения ИСЗ относительно центра масс с пассивными системами ориентации

Задачи движения ИСЗ относительно центра масс с пассивными системами ориентации
  • Автор:

    Гутник, Сергей Александрович

  • Шифр специальности:

    01.01.07

  • Научная степень:

    Кандидатская

  • Год защиты:

    1984

  • Место защиты:

    Москва

  • Количество страниц:

    110 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1. Уравнения движения спутника-гиростата 
1.2. Положения равновесия спутника-гиростата. Обратная задача


Глава I. Анализ положений относительного равновесия спутника-гиростата. Общий случай

1.1. Уравнения движения спутника-гиростата

1.2. Положения равновесия спутника-гиростата. Обратная задача

1.3. Прямая задача. Частные случаи

1.4. Общий случай

1.5. Исследование равновесных решений

1.6. Устойчивость положений равновесия

1.7. Численные результаты


Глава 2. Положения равновесия спутника-гиростата при действии аэродинамического момента

2.1. Уравнения движения спутника-гиростата с учетом сопротивления атмосферы

2.2. Постановка задачи


2.3. Положения равновесия спутника-гиростата
2.4. Устойчивость положений равновесия
2.5. Другой способ решения задачи
2.6. К вопросу об асимптотической устойчивости положений равновесия
Глава 3. Положения равновесия спутника при действии постоянных моментов
3.1* Уравнения движения

3.2. Анализ положений равновесия спутника с использованием системы аналитических вычислений REDUCE
3.3. Численные результаты
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА

Одним из важных направлений развития современной космической техники является создание пассивных (без расходования энергии и рабочего тела) систем ориентации искусственных спутников Земли.
При разработке таких систем можно использовать свойства гравитационного и магнитного полей, эффект соцротивления атмосферы и светового давления, гироскопические свойства вращающихся тел и др. Применение пассивных методов ориентации наиболее предпочтительно для проектов спутников без сложных программных маневров, с большим временем активного существования и точностью ориентации порядка нескольких градусов [25].
Из систем, использующих свойства внешней среды, наибольшее распространение получили гравитационные системы ориентации, принцип работы которых основан на том, что в центральном ньютоновом поле сил спутник с неравными главными центральными моментами инерции имеет на круговой орбите четыре устойчивых положения равновесия, соответствующих совпадению наибольшей оси эллипсоида инерции спутника с радиусом вектором и наименьшей оси с нормалью к плоскости орбиты [ 5] . Как правило, для проведения научных экспериментов нормального функционирования радиосвязи теле- и фотооборудования необходимо, чтобы спутник находился во вполне определенном положении равновесия.
При практической реализации спутников с гравитационной системой ориентации нужно решить следующие основные задачи. Во-первых, необходимо демпфировать собственные колебания спутника относительно положения устойчивого равновесия, что сводится к выбору способа создания демпфирующего момента и разработке конкретного механизма демпфирования. Другая задача связана с неоднозначностью положения устойчивого равновесия спутника. Если спутник после демпфирования собственных колебаний.должен занять заданное устой-

Можно показать, что знаменатель правой части соотношения (2.18) положителен.
Уравнения (2.13) и (2.17) связывают йн , <2£/, (23{ с параметрами системы 0 , $,, • Используя первое уравнение системы (2.9) с учетом (2.10), (2.17) и (2.18), получим еще одно уравнение относительно <2/, , йц, (23{ в виде
£& _ /6 а# [&ц (-рр '0-//)г+ (3+ а*--йн)- & ^ Х9)
при условии а1{Ф0 •
Из уравнений (2.13), (2.17), (2.19) можно определить 0.« , <%, % через параметры системы в следующем виде:
Соотношения (2.20) - (2.22) определяют решение системы (2.9), (1.21) при условиях а#ФО , а31Ф0 , (з, ~г>а/()а,5 ф о , ^гз(п)а1/]а
Найдем теперь тривиальные решения системы (2.9), (1.21), когда хотя бы одна из главных осей инерции спутника совпадает с некоторой осью орбитальной системы координат. Для этого сначала откажемся ОТ предположений ФО и *0 , при которых мы получали решения (2.20) - (2.22).
Пусть , тогда й{21-с^3=о и уравнения (2.9) имеют,
кроме решения (2.4), решения
(2.20)
(2.21)
(2.22)
л- , р>е =Хо = О ,
#<> ~ о , р0-ж , =о ,
$0 ~ Ро ~ г ~
(2.23)
(2.24)
(2.25)

Рекомендуемые диссертации данного раздела

Время генерации: 0.188, запросов: 967