+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Границы устойчивости разностных схем

Границы устойчивости разностных схем
  • Автор:

    Ильютко, Виктор Петрович

  • Шифр специальности:

    01.01.07

  • Научная степень:

    Кандидатская

  • Год защиты:

    2007

  • Место защиты:

    Москва

  • Количество страниц:

    121 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"1 Влияние неравномерности сетки вблизи концов отрезка на 
1.1 Постановка задачи и предварительные сведения

1 Влияние неравномерности сетки вблизи концов отрезка на

спектр разностной задачи

1.1 Постановка задачи и предварительные сведения

1.1.1 Постановка задачи

1.1.2 Аппроксимация исходной задачи в случае граничных условий первого рода

1.1.3 Аппроксимация исходной задачи в случае граничных условий второго рода

1.2 Оценка спектра оператора второй разностной производной


1.2.1 Сетка с двумя различными шагами, оценка спектра оператора А с граничными условиями первого рода
1.2.2 Сетка с двумя различными шагами, оценка спектра оператора А с граничными условиями второго рода
1.2.3 Сетка с тремя различными шагами, оценка спектра оператора А с граничными условиями первого рода
1.2.4 Сетка с тремя различными шагами, оценка спектра оператора А с граничными условиями второго рода
1.2.5 Квазиравномерные сетки
1.3 Численное исследование спектра
1.3.1 Численное исследование спектра разностного
оператора А, записанного на сетках шн{а) и ^(а,/?)
1.3.2 Численное исследование спектра разностного
оператора А, записанного на квазиравномерных
сетках
1.3.3 Выводы

2 Влияние неравномерности сетки вблизи концов отрезка на
границу устойчивости разностной схемы
2.1 Основные понятия теории устойчивости
2.1.1 Сведения о теории устойчивости
2.1.2 Разностная схема и ее граница устойчивости
2.2 Исследование устойчивости явной схемы
2.2.1 Устойчивость явной разностной схемы на сетках а>л(а), щ{а,(3) и йк(х)
2.2.2 Результаты численного исследования
2.3 Исследование устойчивости схемы с весами
2.3.1 Оценка сверху спектра задачи АуАу = —ААу
2.3.2 Результаты численного исследования разностных схем, близких к абсолютно устойчивым
2.3.3 Результаты численного исследования разностных схем с переменными весовыми множителями
2.3.4 Краткие выводы главы
3 Граница устойчивости разностной схемы для уравнения
теплопроводности в непрямоугольных областях
3.1 Оценка спектра двумерного разностного оператора Лапласа
3.1.1 Способы введения сеток, покрывающих непрямоугольные области
3.1.2 Свойства разностного оператора Лапласа
3.1.3 Тестовый пример
3.1.4 Задача на собственные значения для разностного оператора Лапласа в криволинейном треугольнике
3.1.5 Задача на собственные значения для разностного оператора Лапласа в криволинейной трапеции
3.2 Граница устойчивости для двумерной задачи
3.2.1 Разностная схема
3.2.2 Численное исследование устойчивости явной разностной схемы
3.2.3 Оценки сверху спектра задачи Ау,Ау — -ААу
3.2.4 Численное исследование устойчивости разностной схемы с весами
3.2.5 Краткие выводы

Литература
Список работ автора по теме диссертации

1.2.5 Квазиравномерные сетки
Рассмотрим еще одно семейство неравномерных сеток - квазиравномерные сетки, введенные в [9], [10].
Обозначим через £/, = (ж* € [а, Ь] : г = 0,1 И, хо = а < х < ... < < ждг = 6} неравномерную сетку. Введем вспомогательную переменную £, принадлежащую отрезку [а, /3]. Рассмотрим преобразование х(£)>
обладающее на отрезке [а, /3] следующими тремя свойствами:
1. Достаточно гладко, т.е. существует достаточное количество
непрерывных ограниченных производных
|х(,)(01 < д = °> 1> • • • ,р. Р > 1; а^ЫР', (1-21)
2. Строго монотонно:
х'(£) >т> 0; а < /3; (1-22)
3. Преобразует отрезок [а, /3] в отрезок [а, 6];
а = х{а), Ь = х(Р)- (1-23)
Построим по переменной £ на [а, /3] равномерную сетку щ, состоящую

из N интервалов: & = а + г ■, г = 0,1 IV. Равномерной сетке шь, преобразование х(£) ставит в соответствие некоторую сетку щ,
где*< = х(6)> * = 0,1 Л/.
Если преобразование х(0 обладает свойствами (1.21) - (1-23),
то сетка а>л, порожденная равномерной сеткой сод, называется квазиравномерной.
Квазиравномерную сетку определяет преобразование х(£)- Далее будем обозначать через щ(х) квазиравномерную сетку, порожденную преобразованием х(£)-
Сформулируем лемму об оценке сверху границы спектра разностного оператора А, записанного на квазиравномерной сетке щ{х)-
Лемма 1.9. Для максимального собственного значения Атах(х) разностного оператора А, записанного на квазиравномерной сетке шн(х)> справедлива оценка
. / ^2 + 2/г1 2 4 /1дг-1 + 2/г]у 2
Ду = тах ———7 —, тах 7-7—,
у /12/11 п + П2 щщ+ /гдг—х/гдг Ллг "Ь/*лг-1

Рекомендуемые диссертации данного раздела

Время генерации: 0.367, запросов: 967