+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

О полупростых подалгебрах особых алгебр ЛИ

О полупростых подалгебрах особых алгебр ЛИ
  • Автор:

    Минченко, Андрей Николаевич

  • Шифр специальности:

    01.01.06

  • Научная степень:

    Кандидатская

  • Год защиты:

    2008

  • Место защиты:

    Москва

  • Количество страниц:

    111 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
0.1	Исторические сведения и краткое описание работы 
1 Классификация в комплексном случае


Оглавление
0 Введение

0.1 Исторические сведения и краткое описание работы

0.2 Результаты главы 1

0.3 Результаты главы

1 Классификация в комплексном случае

1.1 Предварительные сведения

1.1.1 Эквивалентность и линейная эквивалентность

1.1.2 Описание регулярных подалгебр

1.1.3 Полные регулярные подалгебры

1.1.4 II- и Б-подалгебры


1.1.5 Одно свойство линейно сопряжённых подалгебр
1.2 Классификация простых вложений
1.2.1 Идентификация простых подалгебр
1.2.2 Результат Дынкина
1.2.3 Описание таблиц 1
1.2.4 Несколько замечаний
1.2.5 Случай д — Е&
1.2.6 Случай д
1.2.7 Случай д = Е%
1.3 Инварианты особых алгебр Ли

1.4 Классификация полупростых вложений
1.4.1 Характеристики Дынкина 3-мерных подалгебр
1.4.2 Основная идея
1.4.3 Случай D
1.4.4 Случай Е
1.4.5 Основной результат
1.5 Нормализаторы простых подалгебр
1.5.1 Результаты Алексеевского
1.5.2 Нахождение групп N = Г X Z
1.5.3 Описание таблиц 1
1.5.4 Примеры нахождения группы Z — Zc(t))
1.5.5 Примеры нахождения группы N = Г X Zq{f})
1.6 Таблицы
2 Классификация в вещественном случае
2.1 Предварительные замечания
2.2 Классификация инволюций
2.2.1 Редукция к классификации внутренних инволюций
2.2.2 Классификация внутренних инволюций
2.2.3 Случай ш ф Id
2.3 Частичный порядок на множестве подалгебр
2.3.1 Задание частичного порядка
2.3.2 Определение ц для классических алгебр Ли
2.3.3 Определение /л для особых алгебр Ли
2.4 Отображение и и его слои
2.4.1 Теорема о редукции
2.4.2 Сведение к случаю: г — простая алгебра Ли, R = Aut х,
G = R{ С)

2.4.3 Классификация вещественных форм ц[д] -примитивных
подалгебр
2.5 Группа автоморфизмов полупростой вещественной алгебры Ли
2.6 Вложения между особыми вещественными алгебрами Ли
2.7 Таблицы

Случай 23. Пользуясь предложением 7, получаем, что всякая подалгебра, линейно сопряжённая I), сопряжена одной из S-подалгебр (ц с Л'7 или f)2 С А". Из работы [4] узнаём, что подалгебра n0(fp) sfe + s[2 является (максимальной) S-подалгеброй в g, чего нельзя сказать о ng(li2) = f)2 + Ai, которая, очевидно, является R-подалгеброй. Значит, подалгебры ф и 1)2 не сопряжены (и, более того, их централизаторы не сопряжены, хотя и изоморфны).
Заметим, что подалгебры (ц, ()2 вкладываются в подалгебры под номерами соответственно 26 и 24. В частности, они содержатся в 2D4.
Случай 41. В обозначениях из разбора случаев 26, 27 для g — Е7, имеем: И — 2А[, г2 = Из + D5, Zg(s) ~ S5, Zg(v:i) = Z5 С §5, Zq(r2) = Z4 с S5. Ввиду того, что все S-подалгебры SO5 С И , 305 с t2 каждом случае сопряжены (в последнем случае это вытекает из предложения 2), достаточно доказать, что найдутся подалгебры, сопряжённые ti, t2, содержащие общую S-подалгебру, изоморфную 505.
Заметим, что в группе §5 существует подгруппа Z4 X Z5 (сомножители порождены циклами (2354) и (12345) соответственно). Это означает, что в алгебре g найдутся подалгебры, сопряжённые с4, с2 (будем их обозначать так же: ti, t2 ), которые пересекаются по подалгебре с°, состоящей из элементов нулевой степени относительно некоторой градуировки на fi периода 4. Эта градуировка не внутренняя, потому что scti является S-подалгеброй. Тогда ясно, что и есть искомая подалгебра SO5.
Случаи 42, 43. В алгебре soie имеются ровно две несопряжённые подалгебры, изоморфные дод, которые вкладываются в первую через спинорное представление и переводятся одна в другую внешним автоморфизмом алгебры S0i6. Как видно из таблицы 1.8, эти подалгебры линейно не сопряжены в g — Es. Поэтому достаточно рассмотреть только случай 42.
В обозначениях разбора предыдущего случая имеем: ti = А%, t2 = D%, Zq(s) ce §3, Zg{ï- 1) = Z3 с §3, Zg(x2) = Z2 С §3 Из того, что S3 = Z2 X Z3 очевидно следует, что класс линейной сопряжённости подалгебры f) С g не распадается и в этом случае: ~ зоg
Классификация вложений. Все ещё не рассмотренные случаи легко разбираются с помощью предложений 2, 5.
На этом классификация простых вложений завершена.

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
κ-вполне транзитивные абелевы группы без кручения Рогозинский, Михаил Иванович 2013
Геометрия и комбинаторика пунктированных кривых с простейшими особенностями Артамкин, Игорь Вадимович 2006
Две задачи алгебраической теории графов Ермакова, Галина Михайловна 2009
Время генерации: 0.215, запросов: 967