+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск
Малые абелевы группы
  • Автор:

    Гердт, Ирина Владимировна

  • Шифр специальности:

    01.01.06

  • Научная степень:

    Кандидатская

  • Год защиты:

    2009

  • Место защиты:

    Томск

  • Количество страниц:

    66 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
§2. Определение и свойства Я-малых групп 
§4. Малые, ©-малые и 91-малые группы

Список обозначений

1 Свойства Я-малых групп

§1. Предварительные сведения

§2. Определение и свойства Я-малых групп


2 Малые и ©-малые группы. Группы, малые относительно классов редуцированных и нередуцированных групп

§3. Малые делимые группы

§4. Малые, ©-малые и 91-малые группы

§5. 91-малые группы

3 Группы, малые относительно различных классов групп без кручения

§6. Группы, малые относительно класса групп без кручения

§7. Малые вполне разложимые группы


§8. Прямые произведения групп, малые относительно классов
узких групп
Литература

Список обозначений
В данной работе слово "группа" будет означать абелеву группу, обозначать группы будем латинскими буквами А. В Классы абелевых
групп будем обозначать готическими буквами 21, 93,
Следующими символами будут обозначаться:
Нот(Д В) - группа гомоморфизмов группы А в группу В;
Т(А) - периодическая часть группы А;
Ар - р-компонента группы А;
А/В - факторгруппа группы А по подгруппе В:
0 - прямая сумма;
П - прямое произведение;
(а, ао ап) - подгруппа, порожденная элементами ад, аг,.. -, а„;
(01, «2, • • •, ап)* ~ сервантная подгруппа, порожденная элементами
^1 ? ^2з * • * з &Пз
Ьр(а) - р-высота элемента а;
Ьа{(>)- £(а) - тип элемента а группы без кручения А;

Хл(а), х(а) - характеристика элемента а группы без кручения А;
г(А) - ранг группы А;
г0(А) - ранг без кручения группы А;
Z(p°°) - квазициклическая р-группа (группа типа р°°);
Q - полная рациональная группа;
Qp = {тп/п | п Є N,m Є Z, (n,p) = 1}.

Теорема 6.2. Следующие условия для группы О эквивалентны:
1) (3 - 2-малая группа.
2) Любая факторно . ограниченная подгруппа группы (3 является
2.-малой группой.
3) Некоторая факторно ограниченная подгруппа группы б? является 2-малой группой.
4) Любая подгруппа конечного индекса группы О является 2-малой группой.
5) Некоторая подгруппа конечного индекса группы С является 2-малой группой.
Доказательство. 1) =ф- 2). Пусть С - Т-малая группа и А
произвольная факторно ограниченная подгруппа группы Д. Пусть р
гомоморфизм группы А в группу ф Д, где Bi £ 2 для всякого г £ I

группы А найдется натуральное число т такое, что тС С А. Рассмотрим сужение р гомоморфизма р на тС, то есть р — р[тс- Эпиморфный образ ?пС группы О является £-малой группой (лемма 2.2). Значит, существует конечное подмножество д С / такое, что р{тО) С ф Д. Тогда т(рА)
ге а
р{тА) = р{т,А) С ф Д.
г€Л
Так как всякая группа Д (г € I) является группой без кручения, то рА с ф Д, и поэтому А - Т-малая группа.
гб.
2) 3). Очевидно.

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Шуровость и отделимость колец Шура над конечными p-группами Рябов, Григорий Константинович 2019
О циклических упорядоченных группах Забарина, Анна Ивановна 1985
Арифметические приложения теории гипергеометрических рядов Пупырев, Юрий Александрович 2011
Время генерации: 0.142, запросов: 967