+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Асимптотические свойства условных распределений непрерывных смесей

Асимптотические свойства условных распределений непрерывных смесей
  • Автор:

    Савинов, Евгений Анатольевич

  • Шифр специальности:

    01.01.05

  • Научная степень:

    Кандидатская

  • Год защиты:

    2009

  • Место защиты:

    Самара

  • Количество страниц:

    148 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
§1. ЦПТ для меры Стыодента в гильбертовом пространстве (общий случай) 
§4. Зависимость случайных величин |хг-7|


Оглавление
Введение
Глава 1. Центральная предельная теорема (ЦПТ) для случайных величин, порожденных условными распределениями проекций непрерывной смеси мер

§1. ЦПТ для меры Стыодента в гильбертовом пространстве (общий случай)


§2. ЦПТ для устойчивых эллиптически-контурированных мер (случай собственного базиса)

§3. Закон больших чисел

§4. Зависимость случайных величин |хг-7|

§5. Условные квантили устойчивых распределений в гильбертовом пространстве


Глава 2. Асимптотические свойства конечномерных условных распределений сферически симметричных мер на локально выпуклом пространстве

§1. Введение

§2. Вид условных функций распределения


§3. Сходимость условных функций распределения

§4. ЦПТ для непрерывной смеси гауссовских мер в локально выпуклом пространстве
Глава 3. Логарифмические производные симметрических мер
§1. Введение
§2. Леммы о представлениях зао(х)
§3. Результаты о дифференцируемости и свойства логарифмических производных
§4. Примеры вычисления логарифмических производных
§5. О некоторых вероятностных свойствах логарифмических производных в локально выпуклом пространстве
§6. ЦПТ для симметрической меры в пространстве последовательностей Я°°
Дополнения
Литература

Введение.
Работа посвящена изучению класса непрерывных смесей вероятностных мер в бесконечномерных пространствах. В центре внимания находятся условные проекции таких мер: рассматриваются их асимптотические свойства и предельные теоремы для сумм случайных величин, порожденных этими проекциями. Особое внимание уделяется свойствам дифференцируемости изучаемых мер и вычислению их логарифмических производных. Кроме того для логарифмических производных таких мер установлены некоторые результаты о независимости, на основе которых доказаны усиленные законы больших чисел.
Вообще различные свойства смесей вероятностных распределений изучались в работах [27], [28], [22], [20], [41]. Известно, (см. [15], стр. 285, [22], [23], стр. 52) что одномерные смеси, в частности, возникают в результате случайного сумирования случайных величин и играют важную роль во многих приложениях. Смеси в бесконечномерных пространствах можно в свою очередь при определенных условиях рассматривать как результат случайного суммирования случайных процессов.
Изучение условных распределений представляет интерес в связи с так называемыми преобразованиями независимости. Один из вариантов такого преобразования был введен М.Розенблаттом (см. [55]). В настоящей работе изучаются свойства преобразований независимости, которые вы-

-/*($
,(«)

-з2-г

/*&)*

£«-»2 к
ехР 1 -у

-52;г

( «21
с1г ехр|-у|
) . V. )
Тогда
ОО оо
= (и; 53*;
V /1

./«(„ £,:)

{-!}

сЙ* = 0.
Следовательно, выполняется п. 1°.
2°. Пользуясь неравенством Коши-Буняковского и гауссовостью случай-
ных величин ха заметим
, г гЛ1!2 ( 21 1!'г
М {хп)Х{ |} < М | |п) | I м||(п)| I = 1 < +оо.
Теперь вычислим (г ф ])
м|(п)х]п)|

Рекомендуемые диссертации данного раздела

Время генерации: 0.145, запросов: 967