+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Q-деформированные скобки Гельфанда-Дикого и универсальная Q-разностная редукция Дринфельда-Соколова

Q-деформированные скобки Гельфанда-Дикого и универсальная Q-разностная редукция Дринфельда-Соколова
  • Автор:

    Пирозерский, Алексей Леонидович

  • Шифр специальности:

    01.01.03

  • Научная степень:

    Кандидатская

  • Год защиты:

    2001

  • Место защиты:

    Санкт-Петербург

  • Количество страниц:

    112 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1 Группы Пуассона-Ли и интегрируемые системы 
1.1 Пуассоновы алгебры, дуальные пары и симплектические



Содержание
Введение

1 Группы Пуассона-Ли и интегрируемые системы

1.1 Пуассоновы алгебры, дуальные пары и симплектические


листы

1.2 Группы Ли-Пуассона и биалгебры Ли

1.3 Теория дубля и одевающие преобразования


2 Уравнения д-КЛУ и обобщенные д-деформированные скобки Гельфанда-Дикого на алгебре Ф1Д д-псевдоразностных операторов

2.1 Алгебра ФПд д-псевдоразностных операторов

2.2 Дробные степени д-псевдоразностных операторов и уравнения Лакса


2.3 Гамильтонов формализм для уравнений д-КДУ
3 ф-разностная редукция Дринфельда-Соколова в случае 0^1
3.1 д-Связности, калибровочные преобразования и
д-разностные уравнения нулевой кривизны
3.2 Конструкция потоков
3.3 Связь между д-разностными уравнениями нулевой кривизны и скалярными уравнениями Лакса на ФГ^
3.4 Пуассонов аспект редукции Дринфельда-Соколова для д-
разностных уравнений
4 Группа д-псевдоразностных операторов комплексных порядков и обобщенные иерархии д-КЛУ
4.1 Логарифмический коцикл и двойное расширение алгебры

4.2 Группа д-псевдоразностных операторов произвольных комплексных порядков
4.3 Обобщенная ^-деформированная структура Гельфанда-Дикого на С- и связанные с ней д-Кс1У иерархии
5 Универсальная д-разностная редукция Дринфельда - Соколова
5.1 Алгебры матриц комплексного размера и их алгебры петель
5.2 Орбиты калибровочного действия верхнетреугольной группы и теорема о сечении
5.3 Выбор г-матрицы
5.4 Явная формула для фактор-скобки и теорема единственности
Заключение
Список литературы

Автор выражает глубочайшую благодарность и искреннюю признательность своему научному руководителю — Михаилу Арсеньевичу Семенову-Тян-Шанскому за постоянное внимание, большую помощь и поддержку в работе.

Чтобы преодолеть эти трудности, мы должны рассматривать более широкий класс скобок Пуассона, которые смешивают левые и правые градиенты. В общем случае такие скобки имеют следующий вид:
А В '

(2-31)
€ ФЦ, 0 ФД- (2.32)

У'р ,
(не путать с левым дифференциалом, определенным в главе 1).
Замечание 2.2 Скобки этого типа естественно возникают в теории групп Пуассона-Ли [33]; мы уже видели их примеры, смотри (1.28) и (1.31). Они также рассматривались Л. Фрейделем и Ж.-М. Майе [8] и Л. Ли и С. Пармантье [21].
Мы будем рассматривать более узкий класс скобок, а именно:
где г = | (Р+ — Р_) и а, Ь, с, <1 — линейные операторы, действующие в Л и удовлетворяющие соотношениям :
а = —а*, д — —б*, с* — Ь. (2.34)
Другими словами, скобка (2.33) отличается от “наивной” скобки Гель-фанда-Дикого наличием некоторого возмущения, действующего только на Для любых операторов а, Ъ, с, й соответствующая г-матрица
п = I г+ аР0 ЬРо
У сР0 г -Г дР0 ) удовлетворяет классическому модифицированному уравнению Янга-Бакстера в ФД 0 ФРД откуда следует тождество Якоби для скобки (2.33).

Рекомендуемые диссертации данного раздела

Время генерации: 0.198, запросов: 967