+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Спектральные свойства операторов Шредингера и существование решений одного класса нелинейных самосогласованных задач

Спектральные свойства операторов Шредингера и существование решений одного класса нелинейных самосогласованных задач
  • Автор:

    Нетрухновский, Сергей Иванович

  • Шифр специальности:

    01.01.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    1984

  • Место защиты:

    Свердловск

  • Количество страниц:

    156 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"Глава I. РАВНОМЕРНЫЕ ОЦЕНКИ ДЛЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ 
Глава II. ВОЗМУЩЕНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ

Глава I. РАВНОМЕРНЫЕ ОЦЕНКИ ДЛЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ

И СВОЙСТВА СОБСТВЕННЫХ ФУНКЦИЙ

Глава II. ВОЗМУЩЕНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ

Глава III. ВОЗМУЩЕНИЕ СОБСТВЕННЫХ ПРОЕКТОРОВ

Г л а в а ГУ. НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ СВОЙСТВА ИЗОЭНЕР

ГЕТИЧЕСКИХ ПОВЕРХНОСТЕЙ


'.Глава V. О КОМПАКТНОСТИ НЕКОТОРЫХ ФУНКЦИОНАЛЬНЫХ И ОПЕРАТОРНЫХ МНОЖЕСТВ, СВЯЗАННЫХ С ОДНОЧАС -ТИЧНЫМИ ПЕРИОДИЧЕСКИМИ ОПЕРАТОРАМИ 1ПРЦЦИН

ГЕРА В ЭЛЕМЕНТАРНОЙ ЯЧЕЙКЕ

Г л а в а У1. СУЩЕСТВОВАНИЕ РЕШЕНИЙ УРАВНЕНИЯ ХАРТРИФОКА-СЛЭТЕРА


Заключение
Литература

Одной не интенсивно развивающихся областей физики твердого тела является так называемая зонная теория /1-3 /. Магематичеснии свойств спектра и собственных функций (собственных функцио
в трехмерном евклидовом пространстве , и, во-вторых, в создании и реализации алгоритмов для численного расчета спектра и собственных функций этого оператора. Важно заметить, что работа во втором направлении базируется на результатах первого направ -ления, что придает качественным исследованиям свойств оператора
П особую важность.
Первые результаты по свойствам спектра и собственных функ -ций одномерного оператора Шредингера с периодическим потенциалом (оператора Хилла) получены в работах /4,5/ , указавших на "по -лосатую" структуру спектра: интервалы непрерывного спектра (зоны устойчивости) разделены "лакунами" (зоны неустойчивости). Подробное изложение можно найти в работах /6-8/. Именно свойство "полосатости" спектра сыграло впоследствии основную роль в при -ложениях к теории твердого тела.
В более поздних исследованиях оператора Хилла получена глубокая детализация свойств его спектра и собственных функций. Например, с кавдой зоной устойчивости была связана периодическая непрерывная функция X: (К) квазиимпульса К , порожденного спектральным представлением унитарного оператора трансляции,
кая сущность зонной теории заключается, во-первых, в исследова
(I)

коммутирующего с оператором Хилла /9/, выяснеш дафференцияль -ше характеристики , получены различные оценки/10-12/.
Многочисленные публикации посвящены изучению обратной задачи для оператора Хилла, укажем некоторые из них: /13-17/ • Обилие интересных и важных результатов в одномерном случае связано в первую очередь с тем, что рассматриваемое уравнение имеет лишь два ли -нейно независимых решения, этот факт лежит в основе всех иссле -дований.
Значительно более сложная ситуация возникает при исследовании многомерных задач подобного рода. Первым основополагающим результатом в этой области является теорема Блоха / 9 /, доказанная в 1928 году "на физическом уровне строгооти", установившая
основное свойство собственных функционалов V оператора (I):

f(t) - е^/Э(1КХ)и(Х)> (2)
где и. (X) - периодическая по X функция, ( - квази
импульс, имеющий тот же смысл, что и в одномерной задаче, принимающий в случае трех измерений значения в трехмерной ограничен -ной области , называемой зоной Бриллюэна. Первое отрогов
доказательство теоремы Блоха (2) было дано лишь в 1966 году в работе /18/ на основе метода собственных функционалов Гельфан-да-Костюченко /19/ для бесконечно-дифференцируемых потенциалов /(Х) и обобщено на случай потенциалов, имеющих кулоновские особенности в работе /20/. Свойство (2) позволяет свести иву -чение свойств оператора (I) во всем пространстве К к изуче -нию свойств семейства операторов
Н (К) = -Л-2(47+ кг-+ У(Х)

последнее неравенство при I1 > 1 , £<&"/£ - очевидно. Следовательно, имеет место (44). Из (42), (43), (44) следует
о1 > 2
То есть о1 может фигурировать в качестве У в условии (5), и, следовательно, к каждой из совокупностей
Лг= (X бн,— можно применять предположение индукции,
вследствие которого найдутся £ -допустимые разбиения к,, я., соответственно, совокупностей А,. А а , реализующие оценки
41 = салЬ А1 >0, = соло! Аг > О
Неравенства >0 , Ца >0 выполнены вследствие условий А, 10 а Ф ($ . Кроме того, в силу предположения
индукции,
+ И* = к +1 ;
отсюда полагая
Ый* 1^1, М
(45)
получаем
(46)
Из (42), (43) следует неравенство

Рекомендуемые диссертации данного раздела

Время генерации: 0.112, запросов: 967