+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

О вычетах в дополнениях к наборам координатных плоскостей в Cd

О вычетах в дополнениях к наборам координатных плоскостей в Cd
  • Автор:

    Щуплев, Алексей Валерьевич

  • Шифр специальности:

    01.01.01

  • Научная степень:

    Кандидатская

  • Год защиты:

    2005

  • Место защиты:

    Красноярск

  • Количество страниц:

    84 с.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"1. Порождающие ядра групп когомологий вС^ 
1.1.1 Однородные координаты торического многообразия

1. Порождающие ядра групп когомологий вС^

1.1 Торические многообразия

1.1.1 Однородные координаты торического многообразия

1.1.2 Проективные торические многообразия

1.1.3 Конус Кэлера

1.1.4 Торические компактификации пространства С" и

теорема Циха-Ижера

1.2 Конструкция ядра и формулировка основной теоремы о ядрах

1.3 Доказательство основной теоремы о ядрах

2. Применения к интегральным представлениям и реализации вычета Гротендика

2.1 Формула интегрального представления


2.1.1 Воспроизводящее свойство ядра
2.1.2 Интегральное представление в области
2.1.3 Форма объема проективного торического многообразия, индуцированная метрикой Фубини-Штуди

2.2 Примеры
2.3 Формула логарифмического вычета
2.4 Интегральная реализация вычета Гротендика
Заключение
Приложение
Список литературы

Наборы плоскостей в евклидовых пространствах, как вещественных, так и комплексных, играют большую роль в комбинаторике и анализе ([40], [33], [23], [20], [1]). Комбинаторная задача изучения наборов плоскостей в Cd по сложности совпадает с задачей изучения симплици-альных комплексов с d вершинами (см. [22, Prop. 8.6] или [20]).
В своей классической работе Брискорн [21] показал, что наборы гиперплоскостей служат модельной ситуацией в теории сингулярностей при исследовании вопросов монодромии. Во всех этих исследованиях первостепенное внимание отводилось описанию групп гомологий дополнений к указанным наборам. Самым общим результатом в этом направлении является формула Горески-Макферсона [29].
С точки зрения теории особенностей и их разрешений наборы плоскостей служат модельной ситуацией более сложных наборов комплексных аналитических множеств. В настоящей диссертации такая модельность рассматривается в рамках теории многомерных вычетов, а именно, в задаче конструирования ядер — эталонных дифференциальных форм с предписанными сингулярностями в виде наборов комплексных аналитических множеств. Мы сосредоточимся на типичной ситуации теории вычетов, когда максимальномерная нетривиальная группа гомологий до-

достигает максимального значения при t = 1, и тогда мы получаем
(ч/р! - Дм)2 -а>о.
Множество особенностей формы /(£) Т}(£ — z) есть объединение
Z(E) + z = [JZ/ = (J{Cn = • • • > Ok — zik}
I I
по всем I = г*}, соответствующим примитивным наборам V].
Согласно Замечанию в разделе 1.1.3 для всех С €г T(t) имеем тождества
wt)) = х; I Ci - tzi2 - 53 °iCi - tzi2iel jeJ
Подставляя любую точку С множества Zj в соответствующее тождество, получим
- 5Z - tzi2 = - (* - о2 53w2j€j iel
По определению X)ig/ zi2 < h(p), поэтому правая часть соответствующего тождества равна
(1 - tfhip)+иг(е) - (1 - tf 53 |^|2
г€
= (l-t)2 +«/(*)
и строго положительна. Поэтому £ е •£(£) + г не принадлежит циклу Г(1).
Теорема доказана. □

Рекомендуемые диссертации данного раздела

Время генерации: 0.143, запросов: 967