+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Мультипликативные свойства аналитических функций, гладких вплоть до границы

Мультипликативные свойства аналитических функций, гладких вплоть до границы
  • Автор:

    Широков, Николай Алексеевич

  • Шифр специальности:

    01.01.01

  • Научная степень:

    Докторская

  • Год защиты:

    1985

  • Место защиты:

    Ленинград

  • Количество страниц:

    221 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
§ I. Наличие (Р) -свойства в пространствах (ф) 
§ 3. Примеры отсутствия (Р)-свойства

Основные обозначения

Глава I. (р)-евойетва

§ I. Наличие (Р) -свойства в пространствах (ф)

§ 2. Умножение

§ 3. Примеры отсутствия (Р)-свойства

Глава II. Модули гладких вплоть до границы аналитических


функций

§ I. Пространство А


§ 2. Внешние функции из К



§ 3. Пространства Д 2
§ 4. Теоремы вложения типа теоремы В.П.Хавина - Ф.А.Шамояна
Глава III. Нули и их кратности
§ I. Нули функций из
§ 2. Кратность граничного нуля функций из некоторых
подклассов
Глава IV. Замкнутые идеалы пространств Хоп (и)Л) • •
ъ о
§ I. Эквивалентная норма в X (со, I)
Р^- *0
§ 2, Специальная аппроксимация в X (и), I)
Литература

I. Эта работа посвящена, в основном, неванлинновской факторизации классов функций, аналитических в открытом единичном круге О и гладких - в том или ином смысле - вплоть до его границы ЭО . Различные способы факторизации (т.е., попросту говоря, разложения функции на "простейшие” множители) играли и продолжают играть важнейшую роль в комплексном анализе. Канонические произведения в теории целых функций, произведения Бляшке, внутренние и внешние функции стали неотъемлемой частью современного аналитического арсенала. И в наше время он пополняется новыми средствами -укажем, например, на развитие факторизационной техники в обширной серии работ М.М.Джрбашяна Г40] , или на факторизацию целых функций, предложенную Рубелем [42] , или на произведения Горовица [43]. Интерес к различным методам факторизации аналитических функций вызван самыми насущными вопросами комплексного анализа - и, прежде всего, необходимостью исследования свойств единственности и распределения значений, составляющих самую его суть. Факторизационный аппарат широко используется при исследовании идеалов в алгебрах аналитических функций, в задачах спектрального анализа и синтеза; его векторные и операторные аналоги играют существенную роль в современной спектральной теории операторов.
Мы будем здесь заниматься едва ли не наиболее хорошо известной и распространенной факторизацией, а именно, неванлинновской -или как теперь принято говорить - внешне-внутренней. Разработанная Р.Неванлинной, Г.Сеге и В.й.Смирновым, эта факторизация была изуТ&кого рода функции мы будем иногда ради краткости называть гладкими аналитическими функциями, подразумевая гладкость граничных значений.

чена, что называется, "вдоль и поперек" уже в 20-х - 30-х годах.
И, тем не менее, исследования последних лет принесли принципиально новые сведения, обнаружив феномен, который можно приблизительно описать так: внешне-внутренняя факторизация приспособлена не только к пространствам типа классов Харди, но и - неожиданным образом - к пространствам, состоящим из функций, гладких вплоть до границы.
Напомним некоторые определения и факты (подробности можно найти в’[44]! ,{45 3).
2. Аналитическая в D ограниченная функция I называется внутренней, если Uт | I (Ъ1) I = 4 при почти всех Z
t-и-о
Приведем примеры внутренних функций.
а) Пусть {сСх} - последовательность точек множества

D {0} (конечная или нет), удовлетворяющая условию
L (1-ик1)<оО.

р сЦР <^к
Тогда произведение D = I I ~ Г . сходится в D

к некоторой внутренней функции, обращающейся в нуль в точках du и только в них. Функция вида Ъ ь , где we / , называется произведением Бляшке.
б) Пусть JU- - неотрицательная борелевская мера на окружности
ЭЮ , сингулярная относительно лебеговой меры на ЭЮ . функция

теЮ (о)
- внутренняя. Она не обращается в нуль в D . Ее называют сингулярной внутренней функцией (отвечающей мере JW- ).

Существует функция | е А и произведение Бляшке В такие, что !/веА , но |В£Лс0 и |1|^Ац)деу •
Доказательство. Если |/в^А » то $ ==^|/В " внутренняя ограниченная функция. Если бы |1|=|ВЗ'^Лс0 ,
то по теореме I тогда и | В е 1^ , т.е. для доказательства теоремы достаточно построить функцию | и какое-нибудь произведение Бляшке В
(2-а)
Лемма 2.1. Пусть йє О , 0 , ^(Е)=
Тогда
ІЇІщУйа)М^(ш)І=2 + іаі,
(2.1)
Определим теперь модуль вспомогательных внешних функций ^}У=2,3,

+ ~г=т» -5Г< 0 < о ;
ТёТ й+ё

Л Ж_
? (омИ ; 27 ’
<1ё-

К 1 )
„їм О
дє/_Ж

Тогда аналогично тому, как это сделано в [70, легко проверить, что

Є А и, более того,
II ^ Иди, ; V “ 3 1Ф= 4,2, ,. ., (2.2)
См не зависит от 2 , и

Рекомендуемые диссертации данного раздела

Время генерации: 0.106, запросов: 967