+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Конструктивные методы анализа экспоненциальной устойчивости линейных систем запаздывающего типа

Конструктивные методы анализа экспоненциальной устойчивости линейных систем запаздывающего типа
  • Автор:

    Медведева, Ирина Васильевна

  • Шифр специальности:

    05.13.01

  • Научная степень:

    Кандидатская

  • Год защиты:

    2014

  • Место защиты:

    Санкт-Петербург

  • Количество страниц:

    150 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1 Устойчивость линейных систем с запаздыванием 
1.2 Метод функционалов Ляпунова - Красовского



Оглавление

Обозначения и сокращения


Введение

1 Устойчивость линейных систем с запаздыванием

1.1 Общие сведения

1.2 Метод функционалов Ляпунова - Красовского

1.2.1 Функционал со

1.2.2 Матрица Ляпунова

1.2.3 Функционал полного типа

1.3 Метод Разумихина


2 Синтез подходов Ляпунова — Красовского и Разумихина
2.1 Вспомогательные утверждения
2.2 Теоремы об экспоненциальной устойчивости
2.3 Теоремы о неустойчивости
2.4 Модификация множества
2.5 Теоремы с функционалом полного типа
3 Конструктивные методы анализа устойчивости. Скалярное уравнение с одним запаздыванием
3.1 Кусочно-линейное приближение
3.2 Кусочно-кубическое приближение
3.3 Анализ неустойчивости

3.4 Применение функционала полного типа
3.4.1 Кусочно-линейное приближение
3.4.2 Кусочно-кубическое приближение
3.5 Примеры
4 Конструктивные методы анализа устойчивости. Общий случай
4.1 Описание методов
4.1.1 Кусочно-линейное приближение
4.1.2 Кусочно-кубическое приближение
4.1.3 Анализ неустойчивости
4.1.4 Применение функционала полного типа
4.2 Сходимость методов
4.3 Примеры
4.4 Метод нахождения запаса устойчивости
5 Анализ устойчивости систем с несоизмеримыми запаздываниями
5.1 Модификация функционала
5.2 Модификация методов анализа устойчивости
Заключение
Литература
Приложение А. Формулы методов для систем с кратными запаздываниями. 141 Приложение Б. Вычисление матрицы Ляпунова и программная реализация
алгоритмов в МАТЬАВ
Приложение В. Доказательство леммы 5.

Обозначения и сокращения
N, Z, М, С — множества натуральных, целых, вещественных и комплексных чисел соответственно;
N", Z”, R", С” — множества векторов размерности п с натуральными, целыми, вещественными и комплексными компонентами соответственно;
Rnxn — множество матриц размерности п х п с вещественными компонентами;
г — мнимая единица, г2 = — 1;
Re Л — вещественная часть комплексного числа А;
Oftxi — нулевая матрица размерности к х /;
Е — единичная матрица;
Q1 — матрица, транспонированная к матрице Q; det(Q) — определитель матрицы Q;
Amin(Q) — наименьшее собственное число матрицы Q;
||х|| — евклидова норма вектора х Є М”, ||х|| = ААА где х = (ад,..., хп)т;

||С?|| — индуцированная норма матрицы <5, ЦфЦ = тах ||<5ж||;
IIа-ІІ=і
С([—к, 0], М’г) — пространство непрерывных функций <~р: [—/г, 0] —
РС(—Л, 0],М'г) — пространство кусочно-непрерывных функций (/?: [—/г, 0] —>-Кп;
Ск{— /г, 0],МП) — пространство /с раз непрерывно дифференцируемых функций [—/г, 0] —» Мп;
||<р||л, — равномерная норма, заданная в пространстве кусочно-непрерывных
функций, |М|,,= вир || 0є[-Л,О]

Глава
Синтез подходов Ляпунова -Красовского и Разумихина
В настоящей главе представлены основные теоретические результаты диссертации — необходимые и достаточные условия экспоненциальной устойчивости и неустойчивости системы (1.1) (теоремы 2.3-2.С). Эти результаты в определенном смысле объединяют подходы к анализу устойчивости Ляпунова - Кра-совского и Разумихина, описанные в параграфах 1.2 и 1.3. В теореме Красовского 1.6 для анализа экспоненциальной устойчивости требуется функционал, положительно-определенный на множестве кусочно-непрерывных функций, с отрицательно-определенной производной вдоль решений системы. А в теореме Разумихина 1.12 требуется положительно-определенная функция Ляпунова, производная которой вдоль решений является функционалом, отрицательно-определенным, но лишь на множестве функций, удовлетворяющих некоторому специальному условию — условию Разумихина. Подход, предлагаемый в этой главе, основан на методе функционалов Ляпунова - Красовского и использует функционалы с заданной отрицательно-определенной производной, введенные в параграфе 1.2. Однако, и в этом отличие от подхода Красовского, нам не требуется положительная определенность этих функционалов на множестве всех кусочно-непрерывных функций — оказывается достаточно их положительной определенности на множестве функций, удовлетворяющих аналогу условия Разумихина, а именно, на множестве
5={<реРС([-М],1Г) | ||^(0)|| ^ ||^(0)||, в € [-М]}.

Рекомендуемые диссертации данного раздела

Время генерации: 0.103, запросов: 967