+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Ренормгрупповое вычисление поправочных индексов и универсальных амплитуд в двух задачах стохастической динамики

Ренормгрупповое вычисление поправочных индексов и универсальных амплитуд в двух задачах стохастической динамики
  • Автор:

    Компаниец, Михаил Владимирович

  • Шифр специальности:

    01.04.02

  • Научная степень:

    Кандидатская

  • Год защиты:

    2003

  • Место защиты:

    Санкт-Петербург

  • Количество страниц:

    100 с. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1 Квантовополевая ренормгруппа в задачах стохастической динамики. 
1.1 Стандартная форма стохастических уравнений


Содержание
Введение

1 Квантовополевая ренормгруппа в задачах стохастической динамики.

1.1 Стандартная форма стохастических уравнений

1.2 КП формулировка стохастической динамики. Диаграммная техника

1.3 УФ-расходимости, ренормировка

1.4 РГ-уравнения

1.5 Решение РГ-уравнекий

2 Ренормгруппа в Н-модели критической динамики, константа Кавасаки.

2.1 Введение

2.2 Упрощенная Но - модель


2.3 Ренормировка и РГ-анализ Н0 -модели
2.4 Двухпетлевой расчет в схеме МЭ
2.5 Расчет константы Д
2.6 Поправки к скейлингу,
3 Ренормгруппа в теории турбулентности.
3.1 Введение
3.2 Стохастическое уравнение Навье-Стокса и выбор коррелятора случайной силы

3.3 КП формулировка и ренормировка модели
3.4 Двухпетлевой расчет константы ренормировки
3.5 РГ-функции, неподвижная точка и поправочный индекс
4 Универсальные амплитуды в теории турбулентности, константа Колмогорова.
4.1 Универсальные амплитуды
4.2 Парная корреляционная функция
4.3 Расчет константы Колмогорова
4.4 с^-мерный случай
Заключение
Приложение

Введение
Эксперимент в теории критического поведения показывает, что различные физические системы могут иметь схожее критическое поведение. Это привело к появлению понятия универсальности: различные физические системы объединяются в классы универсальности с одинаковым критическим поведением. Универсальными величинами являются критические индексы - показатели в степенных законах поведения. Другим примером универсальных величин являются универсальные амплитуды. Простейшей из них является отношение амплитуд А+/А_ в законах, описывающих сингулярное поведение теплоемкости при приближении к критической точке (при т -> 0):
С(т) =*т_±0 Л±|т|-“/ (1)
где т - безразмерное отклонение от критической температуры Тс.
Предложенный Вильсоном в теории критического поведения метод ренормгруппы и е-разложения позволил рассчитать критические показатели и универсальные отношения амплитуд для многих статических физических моделей вплоть до высоких порядков теории возмущения. Аналогичные расчеты в динамических задачах намного сложнее и редко когда выходили за рамки однопетлевого приближения.
Основной задачей этой работы является ренормгрупповой расчет универсальных амплитуд и критических индексов (с двухпетлевой точностью) в двух задачах стохастической динамики путем исполь-

лишь вклады в 2з в (43)), а Е<з дает вклад в Z) но он заранее известен (отбрасывание в Е всех диаграмм с межмодовым взаимодей-
известна из статики; отсюда определяется без вычислений вклад в Z всех чисто статических диаграмм в модели (43)). В (60) и (61) отсутствуют двухпетлевые "перекрестные"диаграммы с одним статическим и одним межмодовым взаимодействием, поскольку известно [1], что они не дают вкладов (в таких диаграммах всегда есть подграф типа (ф2 (сфгДж')), равный нулю в силу трансляционной инвариантности и поперечности поля у).
Согласованные с [1] обозначения диаграмм в (60), (61) - условные; в подробной записи, например,
где перечеркнутым концам линий соответствуют вспомогательные поля ф',у', а неперечеркнутым - основные поля ф, v. Аналогичная (62) расшифровка всех прочих диаграмм (60), (61) дает 7 диаграмм для Еь, 4 для Ес, 8 для Е^, 7 для Пь и 5 для Пс.
Для расчета констант Z^ и Zq в (43) (а по ним - Z и Zg2 из (46)) достаточно найти УФ-расходящиеся вклады диаграмм Еа,ь,с4 и Падс при нулевой внешней частоте и и отличном от нуля внешнем импульсе к , а затем добавить в Е известный (см. выше) вклад статической диаграммы Ес ■ После суммирования по всевозможным "временным версиям" (вариантам упорядочивания времен вершин) и интегрирова-
ствием приводит к "модели В"[4], для которой константа Z — Zy

Рекомендуемые диссертации данного раздела

Время генерации: 0.133, запросов: 967