+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Напряжения в пленочном покрытии и формирование рельефа его поверхности

  • Автор:

    Костырко, Сергей Алексеевич

  • Шифр специальности:

    01.02.04

  • Научная степень:

    Кандидатская

  • Год защиты:

    2008

  • Место защиты:

    Санкт-Петербург

  • Количество страниц:

    92 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы

Оглавление
Введение
Глава 1. Напряженное состояние тонкого покрытия при действии периодической системы поверхностных сосредоточенных сил
1.1 Постановка задачи
1.2 Основные соотношения
1.3 Периодическое решение при силовых сосредоточенных
воздействиях
1.4 Напряжения в слое
Глава 2. Устойчивость плоской формы напряженного пленочного покрытия при поверхностной диффузии
2.1 Постановка задачи
2.2 Уравнение движения точек поверхности деформируемого тела при
поверхностной диффузии
2.3 Удельная энергия упругой деформации
2.4 Анализ устойчивости плоской формы поверхности пленки
Глава 3. Комбинированный эффект влияния объемной и поверхностной диффузии на развитие рельефа поверхности пленочного покрытия
3.1 Постановка задачи
3.2 Уравнение движения точек поверхности деформируемого тела при
поверхностной и объемной диффузии
3.3 Влияние различных факторов на развитие рельефа пленочного
покрытия
3.4 Концентрация напряжений на искривленной поверхности пленочного
покрытия
Заключение
Литература
Введение
Гетероэпитаксиальные структуры с полупроводниковыми пленочными покрытиями получили широкое применение в электронной и оптоэлектронной промышленности. К примеру, пьезоэлектрическая или пьезорезистивная тонкая пленка, выращенная на кремниевой мембране, может быть использована для электронного определения прогиба мембраны вследствие внешнего воздействия на ее поверхность [1]. Возможность продолжительной эксплуатации приборов микроэлектроники и оптоэлектроники в значительной мере зависит от стабильности их физических свойств и от стабильности образующих их тонкопленочных структур.
Вместе с тем, тонкие пленки из-за своих особых свойств, таких, как большое отношение поверхности к объему, высокая плотность структурных дефектов и возможные большие градиенты механических напряжений, представляют собой весьма неравновесные образования [2]. Существует ряд серьезных проблем технологического характера, связанных с неустойчивым состоянием формы поверхности пленки и ее морфологическим изменением с течением времени. Прежде всего, изменение формы поверхности может происходить на этапе выращивания и термической обработки пленочного покрытия, сопровождаемые процессами конденсации и испарения [3]. При этом вследствие рассогласования параметров кристаллических решеток пленки и основного материала, в пленке возникают достаточно большие сжимающие напряжения порядка 1-2,5 ГПа [4], а на межфазной границе скапливаются дислокации несоответствия [5]. Интенсивный нагрев [6, 7, 8] и большие напряжения [9] превращают первоначально гладкую поверхность пленки в шероховатую, что негативно отражается на ее электрических н оптических свойствах. Данный феномен подтвержден многочисленными

теоретическими и экспериментальными исследованиями, в которых описаны различные конфигурации рельефа, включая островки [10, 11], слабую волнистость [12], острые выступы и впадины [13]. Но, несмотря на часто наблюдаемые морфологические изменения поверхности пленки, причина таких изменений остается до конца не выясненной и вызывает многочисленные дискуссии [14].
Отметим, что иногда процесс формообразования на поверхности пленочного покрытия можно использовать для улучшения свойств электроприборов. Хорошо известно, что при определенных условиях роста и отжиге очень гонкая гетероэпитаксиальная пленка распадается на островки наноразмера (состоящие из 103 — 10Э атомов), называемые квантовыми точками [15]. Данные наноструктуры обладают необычными электрическими и оптическими свойствами, что позволяет разрабатывать на их основе совершенно новые микроэлектронные устройства, такие, как одноэлектронные транзисторы и квантовые полупроводниковые лазеры [16]. Все эти обстоятельства обуславливают большой интерес и стимулируют активность в области изучения формообразования на поверхности гетероэпитаксиальных пленочных покрытий.
Наиболее распространенной моделью волнообразования поверхности напряженного тела является модель потери устойчивости плоской формы поверхности в результате диффузионных процессов, происходящих в приповерхностном слое.
Заметим, что в классической механике деформируемых твердых тел закономерности процесса деформации изучались, как правило, без привлечения каких-либо конкретных представлений о существующей взаимосвязи механических и немеханических форм движения. Поэтому для количественного описания состояния деформируемой среды вводились

действующей на границе. В связи с чем, полученное решение будем использовать для нахождения плотности упругой энергии деформации и приращения гидростатического напряжения на поверхности пленочного покрытия при решении задачи устойчивости.

Рекомендуемые диссертации данного раздела

Время генерации: 0.128, запросов: 967