+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Характеры представлений квантовой тороидальной алгебры gl1

Характеры представлений квантовой тороидальной алгебры gl1
  • Автор:

    Мутафян, Георгий Семенович

  • Шифр специальности:

    01.01.06

  • Научная степень:

    Кандидатская

  • Год защиты:

    2014

  • Место защиты:

    Москва

  • Количество страниц:

    79 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
Степень разработанности темы исследования 
Цели и задачи диссертационной работы



Оглавление
Введение

Актуальность темы исследования

Степень разработанности темы исследования

Цели и задачи диссертационной работы

Положения, выносимые на защиту

Научная новизна

Теоретическая значимость

Методология и методы исследования

Апробация работы


Публикации
Структура и объем диссертации
Глава 1. Об алгебре д^
1.1. IV-алгебры, происхождение д1:
1.2. Определение алгебры д^
1.3. Представления Мак-Магона
1.4. Характеры представлений Мак-Магона
Глава 2. Комбинаторная часть
2.1. Алгоритм 7А5Апл
2.2. Доказательство основной комбинаторной теоремы
Глава 3. Некоторые сведения из теории представлений
3.1. Представления алгебры д(„: базис Гельфанда-Цетлина
3.2. Представления алгебры д^
3.3. Двойственность Хау

Глава 4. Вычисление характера для к =
4.1. Функция дт>п как след в главной градуировке
4.2. Алгебра Ф <8> 0 и её представление
4.3. Комплекс Кошуля
4.4. Вычисление окончательного результата
Глава 5. Вычисление характера при произвольных к, т, п
5.1. Кратность старшего вектора в представлении алгебры д1„
5.2. Вычисление окончательного результата
Глава 6. Вычисление характера при тп = п
6.1. Представления алгебры д^
6.2. Двойственность Хау
6.3. Вычисление окончательного результата
Заключение
Список сокращений и условных обозначений
Список литературы
Приложение А. Примеры к главе
Пример 1. Алгоритм ДОАДд
Пример 2. Отображение р
Приложение Б. Комбинаторное вычисление х(^ооо)

Введение
Актуальность темы исследования. И7-алгебры активно изучаются в последние десятилетия в связи с их широким применением во многих физических и геометрических вопросах. Возникли они изначально как попытки построить достаточно широкий класс примеров конформных теорий поля. На современном языке большая часть структуры конформных теорий поля задаётся т.н. вертекс-операторной алгеброй, т.е. алгеброй, снабжённой операторным произведением, и И7-алгебры, будучи частным случаем вертекс-операторных алгебр, позволяют такие теории строить.
Первоначально W-алгебры возникли как результат редукции аффиной алгебры Ли по подалгебре нильпотентных токов. Большинство известных на сегодняшний день И7-алгебр построены именно так. Самый изученный случай — W-алгебры, ассоциированные с g[n или sln ([1], [2], [3]).
Квантовая тороидальная алгебра gl1; характеры которой вычисляются в настоящей работе, может рассматриваться как деформация таких W-алгебр. Классификация представлений алгебры д[х является очень сложной задачей. В 2011 г. Б.Л. Фейгину с соавторами в работе [4] удалось выделить класс представлений (названных представлениями Мак-Магона), которые можно явно описать в терминах комбинаторных объектов, известных как плоские разбиения. По сути конструкция этих представлений напоминает реализацию представлений алгебры g[n в терминах базиса Гельфанда-Цетлина. В дальнейшем [5] эта

конструкция была обобщена на алгебру gl„ и её представления. Возникла естественная задача - вычислить характеры этих представлений как производящие функции соответствующих плоских разбиений. Отметим, что вычисление характеров является первым и важным шагом в изучении представлений в конформной теории поля. Знание характеров позволяет сравнивать конформные теории с теориями, построенными другими способами (скажем, с решётчатыми теориями), поскольку через характер в них выражаются статистические суммы.

Глава
Некоторые сведения из теории представлений
В работе [4] рассматривалась идея вычисления характера (3) при т = п. В этом случае используется конструкция алгебры Гейзенберга (с образующими-бозонами), содержащей дуальную пару (д^д^), см. главу 6 диссертации. Эта конструкция известна как двойственность Хау в бозонной реализации. В настоящей главе мы используем аналогичную (и так же хорошо известную, см. [22]) конструкцию для алгебры Клиффорда (с образующими-фермионами). Ввиду схожести рассуждений мы приводим все необходимые утверждения без доказательств. Теория, изложенная в этой главе, будет использоваться в главах 4 и

3.1. Представления алгебры д1п: базис Гельфанда-Цетлина
Известно, что любое конечномерное неприводимое представление алгебры д!„ является представлением со старшим весом. Иначе говоря в представлении существует старший вектор V такой, что действие операторов алгебры на нём задаётся равенствами
Еци — кгУ, г = 1.. .п, ЕцУ = 0, 1 < г < ^ < п. (3.1)
Здесь к,..., кп - комплексные числа такие, что Д — к{+ € 2оо- Действие операторов алгебры при этом может быть описано явно в т.н. базисе Гельфанда-Цетлина (см. [27]), сокращённо — базисе ГЦ. Это базис, векторы которого находятся во взаимно-однозначном соответствии с таблицами ГЦ — треугольными таблицами чисел

Рекомендуемые диссертации данного раздела

Название работыАвторДата защиты
Частичные n-арные группоиды с условиями на конгруэнции Решетников, Артём Владимирович 2016
Торические модели Ландау-Гинзбурга Пржиялковский, Виктор Владимирович 2017
Теории с конечным числом счетных моделей и полигонометрии групп Судоплатов, Сергей Владимирович 2006
Время генерации: 0.258, запросов: 967