+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Система совершенствования сортимента садовых растений методом генной инженерии

  • Автор:

    Долгов, Сергей Владимирович

  • Шифр специальности:

    03.01.06

  • Научная степень:

    Докторская

  • Год защиты:

    2011

  • Место защиты:

    Москва

  • Количество страниц:

    38 с. : 20 ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. По данным FAO к 2030 году ожидается увеличение населения планеты до 8 - 10 миллиардов. В связи с этим в 21-ом веке человечество столкнется с рядом новых трудностей, для решения которых потребуются принципиально новые подходы. Основная проблема, ожидающая человечество в ближайшие десятилетия — продовольственная. Эффективность современного сельскохозяйственного производства не позволит удовлетворить постоянно растущие потребности человечества.
Несмотря на огромные достижения традиционной селекции растений, некоторые проблемы сельского хозяйства решить такими методами невозможно или очень сложно. Хотя селекция ведется уже несколько тысяч лет, но ее общий принцип фактически остался прежним: скрещивание разнородных в генетическом отношении форм и последующий отбор в гибридном потомстве экземпляров с набором желательных признаков. Таким способом происходит совершенствование существующих культур за счет придания им новых ценных качеств. Но этот метод обладает несколькими недостатками, а именно: продолжительностью селекционного процесса, случайностью комбинирования генов в результате рекомбинации, низким выходом нужных генотипов, невозможностью переноса признаков из филогенетически отдаленных видов, потребностью в больших площадях, зависимостью от времени года.
С развитием биологической науки в селекции, кроме обычного скрещивания, стали использовать и другие методы, такие как мутагенез, клеточная селекция и вегетативная или соматическая гибридизация. Но, несмотря на возлагавшиеся надежды, все эти методы не произвели ожидавшейся “революции” в селекции сельскохозяйственных культур. Мутагенез характеризуется случайностью мутаций и, как правило, полученные формы растений обладают пониженной жизнеспособностью. Клеточная селекция направлена на реализацию признаков уже заложенных в геноме исходных форм. Вегетативная или соматическая гибридизация (слияние протопластов) позволяет преодолеть нескрещиваемость неродственных видов, но сочетание родительских признаков у получаемых форм так же случайно. Введение же определенного гена в организм с минимальным нарушением его генотипа стало возможным лишь с развитием методов генной инженерии.
Генная инженерия - это перенос генов, выделенных из одних организмов, в другие. Главное преимущество генной инженерии в том, что она позволяет перенести отдельный ген, отвечающей за конкретный признак, что исключает случайные комбинации признаков и разрушение уже сложившегося и вполне удовлетворительного генотипа. Универсальность генетического кода позволяет использовать гены, выделенные из любых организмов. Таким образом, становится возможным получение признаков, недостижимых методами традиционной селекции, например, получить голубую розу. Опираясь на достижения молекулярной биологии и используя технику in vitro, становится достижимой цель селекционеров - изменение единственного признака без нарушения сложившегося генотипа сорта. Комбинация методов генетической инженерии и традиционных способов селекции позволяет эффективно объединять полезные признаки, вносимые гетерологичным генетическим материалом и комплекс уникальных сортовых признаков, созданных многолетним трудом селекционеров. В мировой практике в настоящее время уже накоплен большой опыт генно-инженерного модифицирования сельскохозяйственных культур, приобретших после создания или повышения естественной устойчивости к болезням, вредителям и абиотическим стрессам повышенную продуктивность, а также улучшенное качество продукции. Трансгенные растения становятся своебразными «растительными фабриками» для производства как препаратов медицинского назначения (антитела, съедобные вакцины и т.п.), так и сырья для биотехнологической промышленности, например, биодеградабельного пластика или паутинного шелка. Более того, по мерс расширения генно-инженерных программ в

практическое использование вовлекаются все новые и новые гены, придающие растениям новые, иногда необычные свойства. Одним из ярких примеров создания по сути новой культуры явилось получение коллективом ученых возглавляемым Инго Потрикусом так называемого «Золотого риса», способного как синтезировать провитамин А, так и аккумулировать достаточное для полноценного питания количество железа. Таким образом, генно-инженерным методом удалось преодолеть основные недостатки этой основной для миллиардов людей продовольственной культуры и достичь сбалансированного состава ее питательных компонентов.
Технология генетического модифицирования растений впервые была разработана в середине 80-х годов в целях получения новых трансгенных сельскохозяйственных культур с улучшенными агрономическими характеристиками. Наиболее ярким показателем эффективности технологии генетического модифицирования (молекулярной селекции) являются данные о возделываемых площадях генетически модифицированных (ГМ) культур. Они также отражают темпы коммерциализации научных разработок в этой сфере и их внедрения в производство. Ежегодно на протяжении последних лет США, Бразилия, Аргентина, Канада и Китай являются странами, в которых возделывается подавляющая часть ГМ культур, таких как соя, кукуруза, хлопчатник и рапс. По данным на 2010 год мировая площадь угодий под ГМ культурами составила 148 миллионов га (James, 2011). Прирост по сравнению с 2009 годом составил 10% или 14 млн. га, а по сравнению с 1996 годом площадь под ГМ культурами возросла более чем в 87 раз (от 1.7 до 148 млн. га).
Ведущими ГМ культурами по итогам 2010 года стали: соя - 53% (65.8 млн.га), кукуруза - 30% (37.3 млн.га), хлопчатник - 12% (15.5 млн.га), рапс - 5% (5.9 млн.га). На протяжении периода с 1996 до 2008 года устойчивость к гербицидам являлась неизменно ведущей новой агрономической характеристикой всех ГМ культур, после которой следует устойчивость к насекомым обусловленная Bt-токсином. Так, в 2001 году соя, кукуруза и хлопчатник, устойчивые к гербицидам, занимали 63% (79 млн.га) общей мировой площади ГМ культур, а культуры с геном Bt-токсина - 15% (19.1 млн.га), сорта с двумя-тремя признаками 22% (26.9 MJin.ra)(James, 2009).
Все приведенные выше статистические данные относятся исключительно к ГМ культурам, которые ул<е запущены в масштабное производство. Однако этих данных недостаточно для формирования полной картины скорости развития этой сферы знания, а также прогнозирования ожидаемых изменений в мировой сельскохозяйственной индустрии. Эти недостатки компенсируются широко доступной информацией о проводимых в мире полевых испытаниях трансгенных культур. Так, лидирующее место в мире по числу всех ежегодно проводимых полевых испытаний занимают США: с 1987 до 1998 гг общее их число возросло в 120 раз с 9 до 1086, в последующие годы оно равнялось 982 (1999 г), 882 (2000 г), 1111 (2001 г), 845 (2002 г). Из них на долю кукурузы приходится 4049, хлопчатника - 590, картофеля - 777, табака — 227. Необходимо также отметить, что ГМ формы таких ведущих плодово-ягодные культур как яблоня, груша, виноград и земляника по данным департамента сельского хозяйства США также успешно проходят стадию полевых испытаний: яблоня - 62, груша - 10, виноград — 80, земляника - 67 (FTR Database of USA).
Одним из основных направлений, где успешно применяется генетическая инженерия стало решение проблемы устойчивости к насекомым вредителям. В настоящее время в этой области достигнут значительный прогресс: гены, отвечающие за
устойчивость к болезням и вредителям, клонированы, охарактеризованы и уже получены трансгенные растения. Одним из первых в растения был перенесен ген Bt-токсина Bacillus thuringiensis, широко применяющегося с 60-х годов инсектицида биологического происхождения (Perlak и др., 1990). Этот инсектицид обладает узконаправленной токсичностью к насекомым и является безвредным по отношению к животным и человеку. Поскольку ген имеет бактериальное происхождение, то экспрессия его в растениях недостаточна для эффективного подавления развития насекомых (тысячные

Рис. 16. Трансгенные растения сливы «Стартовая» до и после обработки гербицидом «Либерти»
В дальнейшем для использования феномена РНК интерференции и генерирования siRNA, комплементарных гену белка оболочки вируса Шарки, был создан вектор pCamPPVRNAi содержащий фрагменты гена белка оболочки вируса оспы сливы в обратной и прямой ориентациях, разделенных pdk — интроном (из вектора pHANNIBAL) под контролем конститутивного двойного CaMV35S промотора и октопинсинтазного терминатора Tocs. Т-ДНК в данном векторе также несет репортерный ген gus со встроенным в него интроном гена ST-LS1 картофеля. Ген находится под контролем CaMV35S промотора и нопалинсинтазного терминатора (Tnos). В качестве селективного маркера использован ген hpt. Ген находится под контролем CaMV35S промотора и PA35S терминатора. Вектор был создан O.A. Шульгой в лаборатории генной инженерии растений ГНУ ВНИИСБ. Схема конструирования векторных систем представлена на рисунке 17.

Рис. 17. Схема конструирования кассет экспрессии фрагментов генома вируса Шарки в растениях сливы.

Рекомендуемые диссертации данного раздела

Время генерации: 0.359, запросов: 967