+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Исследование задач оптимального управления динамическими системами дробного порядка методом моментов

Исследование задач оптимального управления динамическими системами дробного порядка методом моментов
  • Автор:

    Постнов, Сергей Сергеевич

  • Шифр специальности:

    05.13.01

  • Научная степень:

    Кандидатская

  • Год защиты:

    2015

  • Место защиты:

    Москва

  • Количество страниц:

    132 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.2. Основные определения и свойства операций дробного порядка 
1.3. Элементы теории дифференциальных уравнений и включений дробного порядка


Оглавление
Введение
1. Обзор основных результатов в области дробного исчисления и теории оптимального управления динамическими системами дробного порядка.

1.1. Краткий исторический очерк

1.2. Основные определения и свойства операций дробного порядка

1.3. Элементы теории дифференциальных уравнений и включений дробного порядка


1.4. Элементы теории оптимального управления динамическими системами дробного порядка
1.5. Выводы
2. Исследование применимости метода моментов для динамических систем дробного порядка с сосредоточенными параметрами.
2.1. Постановка задач оптимального управления для линейной стационарной системы дробного порядка

2.2. Проблема моментов: общие замечания


2.3. Проблема моментов для линейной сосредоточенной стационарной системы дробного порядка
2.3.1. Одномерный случай
2.3.2. Многомерный случай
2.4. Выводы

3. Исследование задач оптимального управления системами дробного порядка с сосредоточенными параметрами
3.1. Задача оптимального управления для одномерных линейных стационарных систем дробного порядка
3.1.1. Одиночный интегратор дробного порядка
3.1.2. Одномерная система общего вида
3.2. Задача оптимального управления для двумерных линейных систем дробного порядка
3.2.1. Двойной интегратор дробного порядка
3.2.1.1. Случай и(Ь) € Ьх[0,Т]
3.2.1.2. Случай и(і) Є Ьг[0, Т]
3.2.1.3. Результаты расчётов
3.2.2. Маятник дробного порядка
3.3. Выводы
4. Исследование задач оптимального управления распределёнными системами дробного порядка с иомогцыо метода моментов.
4.1. Проблема моментов для линейной распределённой системы дробного порядка
4.1.1. Общие замечания
4.1.2. Представление задачи оптимального управления в
форме проблемы моментов
4.2. Исследование корректности и разрешимости проблемы моментов
4.3. Пример расчёта граничного управления для системы, описываемой уравнением переноса
4.4. Выводы
Практические рекомендации
Заключение
Библиография

Введение
Актуальность работы
Дробное интегро-дифференциалыюе исчисление (дробное исчисление. ДИ) имеет достаточно долгую и богатую историю развития [52.55.153.171]. 11а сегодня весьма полно проработаны фундаментальные математические вопросы ДИ и теории дифференциальных (иптегро-дифференциальных) уравнений дробного порядка [52.132,171]. Немало работ посвящено и приложениям дифференциальных уравнений дробного порядка к моделированию различных явлений [13,44,54. 55,132,147,171]. Здесь можно указать самые разнообразные системы и процессы. Во-первых, это механические системы, в которых присутствуют вязкоупругие элементы. Такие системы (и само явление вязкоупругости) изучаются с 20-х гг. XX века и для них многими авторами показано наличие эффектов степенной релаксации, корректное описание которых возможно лишь с использованием аппарата ДИ [55, 147,153]. Аналогичные эффекты степенной релаксации проявляются и в поведении диэлектриков и электролитов [55, бЭ]. Накоплен значительный объём экспериментальных и теоретических данных и относительно других физических систем: плазмоподобные среды (в том числе, неупорядоченные полупроводники), космические лучи, поверхностные явления и т.д.
В упомянутых выше примерах описания физических систем и процессов с помощью аппарата ДИ. как правило, рассмотрение проводится для неуправляемых систем. Только в последние годы стали активно развиваться исследования в области динамики систем дробного порядка с управлением и изучение вопросов оптимального управления [87,102,154]. Извест-

Функции будем также полагать обладающими всеми свойствами, необходимыми для существования решений рассматриваемых ниже уравнений. Начальные и конечные условия для системы (2.1) зададим в виде:
4(0) - Т° = (д?....4). (2.4)
чСЛ = ч1 = (>/Г. • • ■ > Яи)- (2.5)
В дальнейшем будем следовать терминологии из монографии [17|. Поставим следующую задачу оптимального управления.
Задача 2.1 (Задача А). Найти управление и(£), I £ [О, Г], такое, чтобы система, (2.1) перешла из заданного начального состояния (2.4) в заданное конечное состояние (2.5) и при этом или норма управления в пространстве ДДО, Т] или Ьр[0,Т достигла минимального значения, когда значение Т задано.
Задача 2.2 (Задача Б). Найти управление и(1), 1 £ [0,7’], та,кое, чтобы система (2.1) перешла из заданного начального состояния (2-4) в заданное конечное состояние (2.5) и при этом время, управления Т было минимальным при условии [|н|| < I, I > 0, где I .задано.
Далее будет показано, что поставленная задача оптимального управления для системы (2.1) при нецелых положительных значениях а,- может быть сведена к проблеме моментов аналогично случаю целых положительных ср. Также будут выведены условия, при которых проблема моментов может быть поставлена и будет’ разрешима.
2.2. Проблема моментов: общие замечания.
В данном разделе приводятся общая формулировка и основные сведения о проблеме моментов, к которой в последующих разделах будет сводиться задача оптимального управления. Рассмотрение проводится для так называемой /-проблемы моментов, которая отличается от "обычной"проблемы наличием дополнительного ограничения на норму искомой функции и(1)

Рекомендуемые диссертации данного раздела

Время генерации: 0.149, запросов: 967