+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Марковские модели и методы распознавания образов в сигналах с изменяющимися вероятностными свойствами

Марковские модели и методы распознавания образов в сигналах с изменяющимися вероятностными свойствами
  • Автор:

    Моттль, Вадим Вячеславович

  • Шифр специальности:

    05.13.16

  • Научная степень:

    Докторская

  • Год защиты:

    1993

  • Место защиты:

    Москва

  • Количество страниц:

    367 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1.	Практические задачи структурного анализа экспери- 
*	ментальных кривых как задачи распознавания образов



Содержание

Введете
1. Специфика задач распознавание образов в сигналах (экспериментальных кривых) со сложной структурой

1.1. Практические задачи структурного анализа экспери-

* ментальных кривых как задачи распознавания образов

1.2. Классические постановки задачи обучения распознаванию


образов

1.3. Методы обнаружения изменений свойств случайных


процессов
1.4. Цели и задачи исследования
2. Основные модели и задачи анализа экспериментальных кривых
2.1. Базовые модели источника данных и задачи распознавания
последовательности событий
2.I.I. Общая базовая модель данных и задача
распознавания потока случайных событий
* 2.1.2. Базовая детерминированная модель источника
данных и задача распознавания последовательности событий с фиксированной грубостью
2.2. Общая характеристика задач обучения и самообучения
2.3. Модели последовательности событий
2.4. Модели реакции на отдельное событие
2.5. Модели наблюдаемого процесса (экспериментальной
кривой)

2.6. Некоторые частные Еероятностше модели
экспериментальных кривых
2.6.1. Бесфазовая модель - условно марковский случайный процесс, управляемый марковской цепью
2.6.2. Случайный процесс с фрагментами повторяющейся формы
Оптимальные решающие правила и алгоритмы распознавания потока случайных событий
3.1. Постановка задачи
3.2. Сопровождающий случайный процесс потока случайных событий
3.3. Функции потерь
3.4. Оптимальные решающие правила распознавания
3.5. Алгоритмы распознавания для сингулярной функции потерь. 7Cl.
3.6. Алгоритмы распознавания для аддитивной функции потерь.. /0& Обучение распознаванию потока случайных событий путем оценивания параметров модели данных
4.1. Оценивание параметров модели потока событий
и реакции на события каждого класса
4.2. Оценка корня счетной системы уравнений регрессии
и условия ее состоятельности
4.3. Состоятельность оценок параметров в задаче обучения
4.4 Состоятельность оценок параметров для частных моделей
эксперментальных кривых
Обучение путем прямого восстановления апостериорного
потока событий
5.1. Основная схема обучения
5.2. Пространство признаков и критерий обучения
5.3. Алгоритм обучения
5.4. Вычисление градиента логарифмической функции апостериорной вероятности
5.5. Выбор признаков формы кривой и модельный эксперимент,..#'? Решающие правила и алгоритмы распознавания последовательности событий для детерминированной модели источника данных
6.1. Дискриминантные функционалы
6.2. Разрешимость задачи распознавания
6.3. Алгоритмы распознавания
Обучение распознаванию последовательностей событий
для детерминированной модели источника данных
7.1. Постановка задачи обучения
7.2. Алгоритмы обучения
7.3. Сходимость процесса обучения
7.4. Выбор базисных функционалов
Ч.Ъ. Модельный эксперимент и пример выбора Оазисных
функционалов
Самообучение распознаванию последовательности событий
8.1. Задача самообучения как параметрическая задача разделения смеси распределений с зависимыми
гипотезами и зависимыми наблюдениями
8.2. Метод максимального правдоподобия
8.2.1. Функция правдоподобия
8.2.2. Общая схема алгоритма
8.2.3. Вычисление оценок параметров для частных
моделей экспериментальных кривых
8.3. Метод обратной связи
8.3.1. Общая схема алгоритма
8.3.2. Вычисление очередных приближений сегментации и оценок параметров для частных моделей экспериментальных кривых
-3S~

r&(£) = P(o>)=ftjx(w)=?j , ]> rfe(£) =1, &= 1

Функции r*(|), £«Rn в некоторых руководствах называют функциями степени достоверности.
В дальнейшем, где это не будет вызывать недоразумений, мы будем отдавать предпочтение записям /(х), ф(х), г*(х), обозначая аргумент плотности распределения в признаковом пространстве тем же символом х, что и отдельные значения вектора признаков.

Средний риск ошибки распознавания j[g(*)j (1.2.1) как
функционал на множестве решающих правил g(x) полностью определяется парой /(х), rfe(x) либо парой qk, ф*(х), &
хеЯп:

j[g(‘)j = | [ 2 [g(x),&]r*(x)J/(x)dx

= Г [ J A,[g(x)tfc]q*0*(x)Jdx
Rn k=1 (1.2.5)
дП. Ъ
Эти выражения, вообще говоря, эквивалентны, поскольку оба представления вероятностной модели данных могут быть пересчитаны друг в друга:
т ф(X)
/(х) = у д1 фх(х), г*(х) =

и наоборот,
и Г ъ Ъ Г*(Х)/(Х)
| г (х)/(х)(3х, ф (X) =

В то же время первое из выражений (1.2.5) более удобно в том смысле, что непосредственно указывает структуру оптимального (байесовского) решающего правила:

Рекомендуемые диссертации данного раздела

Время генерации: 0.125, запросов: 967