+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Спектроскопия и малоугловое рассеяние в решении обратных задач исследования многокомпонентных систем

Спектроскопия и малоугловое рассеяние в решении обратных задач исследования многокомпонентных систем
  • Автор:

    Волков, Владимир Владимирович

  • Шифр специальности:

    01.04.18

  • Научная степень:

    Докторская

  • Год защиты:

    2014

  • Место защиты:

    Москва

  • Количество страниц:

    285 с. : 62 ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
Часть 1	Компьютерный спектроскопический анализ 
1.2	Геометрическое представление задачи разложения и



ОГЛАВЛЕНИЕ
Введение

Часть 1 Компьютерный спектроскопический анализ

многокомпонентных систем

1.1 Литературный обзор

1.2 Геометрическое представление задачи разложения и

единственность решения

1.3 Методы определения числа компонентов по матрице

экспериментальных данных

1.3 Л Литературный обзор


1.3.2 Методика приготовления тестовых задач для
спектроскопического анализа
1.3.3 Графический метод анализа сингулярных чисел
1.3.4 Анализ спектра сингулярных чисел и матрицы остатков
1.3.5 Анализ сингулярных векторов матрицы данных
1.3.6 Использование эталонных спектров и библиотечный поиск
1.3.7 Определение состава единственного спектра смеси с
помощью набора эталонных спектров
1.4 Методы разделения спектров смесей
1.4.1 О единственности решения задачи разложения
1.4.2 Метод итерационного проектирования с отбором
признаков
1.4.3 Метод итерационного моделирования индивидуальных
спектров с использованием дополнительной информации и ограничений
1.4.3.1 Анализ колебательных спектров жидкой воды
1.4.3.2 Анализ спектров при наличии межмолекулярных
взаимодействий: смеси диметилформамида с гексафторэтиленом

1.4.3.3 Анализ устойчивости решения
1.5 Использование сведений об относительных концентрациях
компонентов в смесях
1.5.1 Литературный обзор
1.5.2 Тактика поиска спектров компонентов с анализом
устойчивости и надежности решения
Часть 2 Определение структурных параметров наноразмерных
объектов по данным малоуглового рентгеновского и нейтронного рассеяния
2.1 Литературный обзор
2.2 Изучение формы наночастиц и биомолекул в растворе по
данным малоуглового рассеяния
2.2.1 Проблема однозначности
2.2.2 Моделирование формы наночастиц ортогональным рядом
2.2.2.1 Численное исследование неоднозначности и стабильности
решения
2.2.2.2 Пример определения форм белковых молекул в растворе по
данным малоуглового рентгеновского рассеяния
2.2.2.3 Построение многокомпонентной оболочечной структуры
рибосомы 70S E.coli в растворе по данным нейтронного малоуглового рассеяния
2.2.3 Определение формы частиц методом шариковых моделей
2.2.3.1 Алгоритмические принципы поиска шариковых моделей
2.2.3.2 Исследование устойчивости и однозначности определения
строения частиц методом шариковых моделей
2.2.4 Исследование структуры белковой фазы частицы 30S
Thermus Thermophilus в растворе методом малоуглового рассеяния с вариацией контраста

2.2.5 Исследование морфологии макромолекул
иммуноглобулинов и ревматоидного фактора человека по данным малоуглового рассеяния от раствора
2.2.5.1 Исследование устойчивости определения формы молекулы

2.2.5.2 Результаты исследования растворов молекул
иммуноглобулинов и ревматоидного фактора
2.3 Анализ данных малоуглового рассеяния от смесей
полидисперсных частиц
2.3.1 Применение метода моделирования распределений: анализ
микроэмульсий
Выводы
Приложение Программное обеспечение для решения задач анализа
смесей и данных малоуглового рассеяния
Литература
Список цитируемой литературы
Список работ автора

1.2 Геометрическое представление задачи разложения и единственность
решения
Разнообразие математических приемов разложения наборов сложных родственных контуров не так велико, как может показаться на первый взгляд и сводится, как правило, к построению линейных комбинаций (т.е. сложению и вычитанию с некоторыми коэффициентами) исходных спектров смесей. Этот принцип лежит в основе всех рассматриваемых в данной работе методов.
Векторное представление спектроскопической информации с учетом соотношений (0.1-0.4) позволяет наглядно продемонстрировать особенности задачи анализа смесей. При числе спектральных точек Ж, превышающем число компонентов К, пучок векторов-спектров компонентов определяет в Ж-мерном пространстве К - мерное подпространство, в котором находятся все возможные спектры смесей (в силу (01)). На Рисунке 1.1 показан случай Ж= 3, М= 4, К = 2, т.е. подпространство спектров смесей представляет собой плоскость в 3-мерном пространстве (по координатным осям отложены интенсивности, а порядковый номер оси соответствует номеру точки в спектре), и спектры компонентов образуют базис этой плоскости (неортогональный в общем случае).
В случае, когда известна только матрица Д задача нахождения спектров компонентов X заключается в нахождении разложения (02) относительно неизвестных элементов матриц X и С. Поскольку неизвестные входят в (2) в виде парных произведений, то это соотношение представляет собой систему нелинейных уравнений, решение которой неединственно. Действительно, если X' и С - решение (2), то всегда можно найти такую невырожденную матрицу А , что
О = X С , (1.1) где
И I II 1 I
Х=Х-АиС=А С . Эта проблема неединственности является основной в задаче анализа многокомпонентных смесей по их спектрам и решается путем привлечения той или иной дополнительной информации и ограничений на вид решения.

Рекомендуемые диссертации данного раздела

Время генерации: 0.148, запросов: 967