+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Математическое моделирование и управление процессами теплообмена керамических изделий с учётом ограничений на термонапряжения

Математическое моделирование и управление процессами теплообмена керамических изделий с учётом ограничений на термонапряжения
  • Автор:

    Ткачёв, Владислав Игоревич

  • Шифр специальности:

    01.04.14

  • Научная степень:

    Кандидатская

  • Год защиты:

    2015

  • Место защиты:

    Бирск

  • Количество страниц:

    131 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"
1.1.2. Моделирование теплообмена на поверхности стопора-моноблока 
1.1.3. Применение метода конечных элементов для вычисления термических


ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ
ГЛАВА 1. ИССЛЕДОВАНИЕ ТЕРМИЧЕСКИХ НАПРЯЖЕНИЙ В КЕРАМИЧЕСКИХ ИЗДЕЛИЯХ СЛОЖНОЙ ГЕОМЕТРИЧЕСКОЙ ФОРМЫ ПРИ

РАЗЛИЧНЫХ СВОЙСТВАХ МАТЕРИАЛА


1.1 ИССЛЕДОВАНИЕ ВЛИЯНИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО РАСШИРЕНИЯ НА ТЕРМОУПРУГИЕ НАПРЯЖЕНИЯ В СТОПОРЕ-МОНОБЛОКЕ

1.1.1. Постановка задачи

1.1.2. Моделирование теплообмена на поверхности стопора-моноблока

1.1.3. Применение метода конечных элементов для вычисления термических

напряжений в осесимметричных моделях

1.1.4. Результаты вычислительного эксперимента и их анализ


1.2. ИССЛЕДОВАНИЕ ВЛИЯНИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО РАСШИРЕНИЯ НА ТЕРМОУПРУГИЕ НАПРЯЖЕНИЯ В СБОРНОМ СТОПОРЕ
1.2.1. Постановка задачи
1.2.2. Моделирование теплообмена на поверхности стопорной трубки
1.2.3. Результаты вычислительного эксперимента и их анализ
ГЛАВА 2. УПРАВЛЕНИЕ ПРОЦЕССОМ ОХЛАЖДЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ С УЧЕТОМ ОГ РАНИЧЕНИЙ НА ТЕРМИЧЕСКИ: НАПРЯЖЕНИЯ
2.1. МОДЕЛИРОВАНИЕ УПРАВЛЕНИЯ ПРОЦЕССОМ ОХЛАЖДЕНИЯ КЕРАМИЧЕСКОГО ДЕРЖАТЕЛЯ СПИРАЛИ С УЧЕТОМ ОГРАНИЧЕНИЙ НА ТЕРМИЧЕСКИЕ НАПРЯЖЕНИЯ
2.1.1. Постановка задачи
2.1.2. Моделирование теплообмена на поверхности держателя спирали в
электрической печи
2.1.3. Применение метода конечных элементов к вычислению термических
напряжений в произвольной трёхмерной области
2.1.4. Алгоритм управления охлаждением печи
2.1.5. Результаты вычислительного эксперимента и их анализ
2.2. МОДЕЛИРОВАНИЕ УПРАВЛЕНИЯ ПРОЦЕССОМ ОХЛАЖДЕРМЯ КЕРАМИЧЕСКОГО ИЗОЛЯТОРА С УЧЕТОМ ОГРАНИЧЕНИЙ НА ТЕРМИЧЕСКИЕ НАПРЯЖЕНИЯ
2.2.1. Постановка задачи
2.2.2. Моделирование теплообмена на поверхности керамического изолятора в электрической печи
2.2.3. Метод конечных элементов при вычислении термоупругих напряжений в двумерной области произвольной формы
2.2.4. Алгоритм управления охлаждением печи
2.2.5. Результаты вычислительного эксперимента и их анализ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЕ

ВВЕДЕНИЕ
Актуальность темы исследования
Во многих отраслях промышленности применяются технологии связанные с нагревом изделий, элементов конструкций, деталей машин. Очень часто некоторые элементы промышленных агрегатов эксплуатируются при больших термических нагрузках. В таких ситуациях следует учитывать ограничения, связанные с термическими напряжениями. В противном случае термические напряжения могут сопровождаться сильными деформациями или даже разрушениями, что может привести к аварийным ситуациям.
Анализ термоупругих напряжений играет немаловажную роль при изготовлении различного рода изделий на стадии термической обработки. Отсутствие контроля над температурным режимом тепловых агрегатов нередко приводит к появлению дефектов и технологическому браку из-за возникающих термических напряжений. Кроме того, детальное исследование термических напряжений в изделиях сложной геометрической формы даёт возможность управлять температурой при термообработке, с учётом ограничений на напряжения. В связи с этим возникают проблемы снижения длительности производственного цикла, уменьшения энергозатрат при термической обработке изделий, совершенствование деталей технологического оборудования, с целью продления срока службы. Так как экспериментально получить эффективный режим нагрева или определить свойства материала изделий, не допускающих разрушения и необратимых деформаций, не всегда возможно, предполагается исследование математической модели, позволяющей имитировать технологический процесс.
Таким образом, теоретическое исследование математических моделей связанных с определением термических напряжений, правильный подбор методов исследования, разработка алгоритмов вычислений, создание инструментальных средств компьютерного моделирования, и исследование с их помощью

где е- объёмная деформация, X, ц - постоянные Ламе, Е— модуль Юнга, V-коэффициент Пуассона, ат- коэффициент линейного расширения, 8у - символ Кронекера.
Таким образом, уравнения (1.1.3) запишутся в виде:
|(Хе8е + 2А.Еу8еи )йЮ - |(ЗХ + 2х)ау{Т -Т^ЬесЮ. - |ау8и1п]сП2. (1.1 Л2) по г
Левая часть уравнения (1Л.12) выражает возможную (виртуальную) работу
внутренних термомеханических напряжений, а правая возможную работу
граничных нагрузок.
Для решения задачи используем конечно-элементную модель, которая
применялась при решении задачи теплопроводности.
Обозначим через и = щ, V = и2. Перемещения запишем в виде вектора
м-[:;
Неизвестные перемещения и, V аппроксимируем кусочно-линейными функциями вида
и = Цм,(г,г)и1,

, = ХХ(^г)у,,

где и1 и у, - неизвестные коэффициенты, А') (г, г) - линейные базисные функции.
Уравнение (1.1.12) для отдельного элемента можно записать в матричной форме
|[Ле]г[П][ВефЮе{£/е}= [Ве]т[В]{г}с1Пе + {Ие}т{Ре}с1Ге. (1.1.13)
п‘ пе ге
Постоянные Ламе X и ц запишем в виде матрицы констант упругости
1-ц ц ц О
ц 1-ц ц О

(1 + 1-0(1 - 2ц)

ц 1-ц
1 - 2ц

Рекомендуемые диссертации данного раздела

Время генерации: 0.228, запросов: 967