+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Вакуумная ультрафиолетовая спектроскопия твердых тел на синхротроне "Сириус"

  • Автор:

    Тимченко, Николай Алексеевич

  • Шифр специальности:

    01.04.05

  • Научная степень:

    Докторская

  • Год защиты:

    2004

  • Место защиты:

    Москва

  • Количество страниц:

    248 с. : ил.

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы

Физическое явление, возникающее при движении релятивистских заряженных частиц по криволинейным траекториям в магнитных полях и называемое в настоящее время «синхротронное излучение», известно с начала XX века.
Наличие излучения заряда движущегося по окружности следовало из уравнений классической электродинамики Максвелла - Лоренца и впервые было исследовано А.Льенаром (1898г.) и Г.Шоттом (1907г.).
В этих работах были получены формулы для мощности излучения релятивистского заряда, движущегося по окружности, и для её спектрально - углового распределения.
Однако эти формулы долгое время представляли лишь академический интерес и были востребованы только спустя 40 лет, когда возник вопрос о влиянии излучения релятивистских заряженных частиц на их движение по макроскопическим траекториям в магнитных полях циклических ускорителей. Первым циклическим ускорителем, в котором был преодолён

релятивистский барьер (у = —- >1) был бетатрон, и электроны, ускоренные

в бетатроне до энергии 100 МэВ, приобретали скорость V практически неотличимую от скрости света У=0.99999 С.
В 1944 году Д.Д.Иваненко и И.Я.Померанчук установили, что вследствие сильных радиационных потерь существует предельное значение энергии электронов, ускоряемых в бетатроне, которое составляет 5.108 эВ [1].
Затем в 1945 году И.Я.Померанчуком в работе, выполненной совместно с Л.А.Арцимовичем [2], было показано, что вся энергия излучения релятивистских электронов, движущихся по круговым орбитам в магнитном поле, сосредоточена в плоскости орбиты (радиуса Я) в области углов у/-тс1 /£ = 1/у, а максимум спектрального распределения лежит в
области длин волн А-Л/у3. В этой работе был также впервые рассмотрен вопрос об интерференции излучения отдельных электронов и показано, что при нескоррелированых относительных положениях излучающих электронов, излучение ускоряемого сгустка из N электронов некогерентно и потоки энергий, излучаемые отдельными электронами II просто складываются, то есть ^Мь Такая ситуация выполняется и для всех современных синхротронов и накопителей, где относительные положения электронов можно считать скоррелированными с точностью до длины сгустков, в которые собраны ускоряемые электроны, величина которой порядка 0.1 метра, то есть существенно больше значения длин волн излучаемого коротковолнового излучения. Поэтому о когерентности излучения в синхротронах и накопителях можно говорить только в диапазоне коротких радиоволн.
Таким образом, в работах [1, 2] предсказывалось, что при энергиях в несколько десятков МэВ электронный пучок в ускорителе должен излучать в видимой области, а интенсивность этого свечения пропорциональна ускоряемому току.
Это, теоретическое предсказанное, физическое явление и было экспериментально зарегистрировано в 1947 Д.Поллоком с сотрудниками на синхротроне компании «Дженерал Электрик» с энергией 80 МэВ в виде яркого голубоватого света [3]. Поскольку впервые предсказанное излучение наблюдалось в синхротроне, то оно получило название синхротронного (СИ).
В последующих теоретических работах были получены, а затем экспериментально подтверждены, формулы для практических расчетов количественных спектрально - угловых и поляризационных характеристик СИ, исследовано его влияние на параметры ускоряемых электронных сгустков [4 - 13].
Было выяснено влияние квантовых поправок на свойства синхротронного излучения и разработаны методы учёта влияния квантовой природы излучения на динамику движения электронов в ускорителях, а затем построена законченная квантовая теория явления с учётом роли спина электронов [9].
Результаты, полученные в указанных работах, показали, что синхротронное излучение обладает уникальными свойствами, которые, как это было показано, например, в работе [12], позволяют считать синхротрон эффективным источником света в вакуумной ультрафиолетовой и рентгеновской областях спектра. Главными особенностями такого источника являются следующие:
1. Спектральное распределение излучения представляет собой континиум, простирающийся от инфракрасной до рентгеновской области спектра.
2. Интенсивность синхротронного излучения современных ускорителей в вакуумной ультрафиолетовой и мягкой рентгеновской областях спектра превышает на несколько порядков интенсивность используемых в этих спектральных областях газоразрядных источников излучения и рентгеновских трубок.
3. Излучение обладает острой направленностью. Расходимость излучения в вертикальной плоскости в направлении распространения составляет несколько миллирадиан, уменьшаясь в рентгеновской области до десятых долей миллирадиана.
4. Синхротронное излучение в плоскости орбиты обладает практически 100% степенью линейной поляризации. Если наблюдать излучение вне плоскости орбиты, поляризация излучения становится эллиптической. По разные стороны плоскости орбиты излучение имеет левую и правую эллиптическую поляризацию. В настоящее время это
Рис. 2.3. Оборудование каналов синхротронного излучения в экспериментальном зале.

Рекомендуемые диссертации данного раздела

Время генерации: 0.114, запросов: 967