+
Действующая цена700 499 руб.
Товаров:
На сумму:

Электронная библиотека диссертаций

Доставка любой диссертации в формате PDF и WORD за 499 руб. на e-mail - 20 мин. 800 000 наименований диссертаций и авторефератов. Все авторефераты диссертаций - БЕСПЛАТНО

Расширенный поиск

Модифицированные функции Лагранжа в задачах отыскания седловых точек

Модифицированные функции Лагранжа в задачах отыскания седловых точек
  • Автор:

    Абасов, Теймур Митат оглы

  • Шифр специальности:

    01.01.09

  • Научная степень:

    Кандидатская

  • Год защиты:

    1984

  • Место защиты:

    Москва

  • Количество страниц:

    179 c. : ил

  • Стоимость:

    700 р.

    499 руб.

до окончания действия скидки
00
00
00
00
+
Наш сайт выгодно отличается тем что при покупке, кроме PDF версии Вы в подарок получаете работу преобразованную в WORD - документ и это предоставляет качественно другие возможности при работе с документом
Страницы оглавления работы
"ГЛАВА. I. МОДИФИЦИРОВАННЫЕ ФУНКЦИИ ЛАГРАНЖА В ВЫПУКЛОЙ 
ЗАДАЧЕ ПОИСКА СЕДОВЫХ ТОЧЕК С ОГРАНИЧЕНИЯМИ

ГЛАВА. I. МОДИФИЦИРОВАННЫЕ ФУНКЦИИ ЛАГРАНЖА В ВЫПУКЛОЙ

ЗАДАЧЕ ПОИСКА СЕДОВЫХ ТОЧЕК С ОГРАНИЧЕНИЯМИ

§ 1.1. Метод штрафных функций в задачах математического программирования


§ 1.2. Определение и некоторые свойства слабых модифицированных функций Лагранжа (СМФЛ)

§ 1.3. Модифицированные функции Лагранжа (МФЛ)

§ 1.4. Двойственные модификации функции Лагранжа

§ 1.5. Регуляризированный вариант модифицированной

функции Лагранжа

§ 1.6. Двойственные градиентные методы поиска седповых точек

§ 1.7. Модифицированные функции Лагранжа в задаче

выпуклого программирования


ГЛАВА 2. МОДИФИЦИРОВАННЫЕ ФУНКЦИИ ЛАГРАНЖА В НЕВЫПУКЛОЙ ЗАДАЧЕ ПОИСКА СЕРОВЫХ ТОЧЕК С ОГРАНИЧЕНИЯМИ
§ 2.1. Вспомогательные сведения и постановка задачи
§ 2.2. Двойственные методы поиска строгой локальной
седповой точки
§ 2.3. Диагональные двойственные алгоритмы
§ 2.4. Прямые методы поиска строгой локальной седловой точки
§ 2.5. Точная штрафная функция в задаче поиска строгой локальной седловой точки с ограничениями
§ 2.6. Симметричная модификация функции Лагранжа
§ 2.7. Алгоритмы отыскания строгой локальной седповой точки, использующие симметричную МФЯ

§ 2.8. Задача поиска локальных седловых точек с ограничениями-неравенствами
ЗАКЛЮЧЕНИЕ
ПРИЛОЖЕНИЕ I. МОДИФИЦИРОВАННЫЕ ФУНКЦИИ ЛАГРАНЖА В МНОГОКРИТЕРИАЛЬНЫХ ЗАДАЧАХ ОПТИМИЗАЦИИ
ПРИЛОЖЕНИЕ
ЛИТЕРАТУРА

СПИСОК ОБОЗНАЧЕНИЙ
Rn- п - мерное вещественное евклидово пространство.
- неотрицательный и неположительный ортанты в Rn . Il'II - евклидова норма в Rn
<• , •> - скалярное произведение в Rn
1п - единичная матрица размера пхп
А , А - матрицы, транспонированная и обратная к А
IIAII - норма матрицы А , согласованная с нормой векторов.
спектральный радиус матрицы . а гу таэс Г (ос) - точка глобального максимума Г foc) на X
А гут ах F(х) _ множество точек глобального максимума функции Г (ос) на X .
F-jcJ^ÿ), Гу (ос, у) - градиенты F(х, у) по переменным х , у
Гх - полная производная функции F(x,y(x)) по X
locF(х*у) JyF(x,tj) - субдифференциалы вогнутой по х и выпуклой по у функции F[х, у) . ftx (х) - проекция точки х на множество X •
р(х,Х) - расстояние от точки х до множества X
X * У - декартово произведение множеств X и Y
Sr(Q) - шар радиуса R с центром в точке Q

max inf [min F(x,y)++ß2ty)}+-Д(p) = g(x)>p aeO hluhg J
xeX yeY
=max inf inf [F(xm)++ßz(h(u)+b)}-h
o(x)>p cyeQ fair)eSty) !i 6 ‘ ‘
xe^
+ -ßj (p)
= max inf {F(x,y)++ß2(hfy)+b)}+-y(x) >p yeY xeX Ъ-eRH.
-A (p)
-max min{F(x,u)+>)(h(y)A)}+-ßi(p), fjM>p yeY xeX
где S((f)=[(u,b)eYx R-lh(y)-f- ь =y[ .Обозначая
R (p)={(x,u)eX*R+lp(x)-u =p I , из последнего соотношения вместе с (1.38) получим
iup inf $у(р,у) + ь(р,ц,в)}=±ир[тазс min [F(xty)+
peP peQ pep д(х)>р yeY

+ t ('h(fj), /А)] + -Д (p)}
=äup ьир min [F(x,u)+ 0(h(u),) ] + уи>-Д[у(х)-и)}
= йир {min [Ffx,y) + yfh fy),)] + -
xeX ueR+

-ß^fyfxj-ty^-max min T(w) J xeX yeY

Рекомендуемые диссертации данного раздела

Время генерации: 0.092, запросов: 967