

БОЕВА ЖАННА АЛЕКСАНДРОВНА

МАТРИЧНАЯ ПОЛИМЕРИЗАЦИЯ АНИЛИНА В ПРИСУТСТВИИ ПОЛИСУЛЬФОНОВЫХ КИСЛОТ

02.00.06 - высокомолекулярные соединения, химические науки

1 3 OKT 2011

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук Работа выполнена в лаборатории полиэлектролитов и биополимеров кафедры высокомолекулярных соединений химического факультета Московского государственного университета имени М.В. Ломоносова.

Научный руководитель:

доктор химических наук Сергеев Владимир Глебович

Официальные оппоненты:

доктор химических наук, профессор Паписов Иван Михайлович

доктор химических наук, профессор Чвалун Сергей Николаевич

Ведущая организация: Институт элементоорганических соединений Российской академии наук им. А.Н. Несмеянова (ИНЭОС РАН)

Защита состоится 26 октября 2011 г. в 15 часов на заседании диссертационного совета Д 501.001.60 по химическим наукам при Московском государственном университете имени М.В. Ломоносова по адресу: 119991, Москва, Ленинские горы, МГУ имени М.В. Ломоносова, д.1, стр. 3, химический факультет, Лабораторный корпус «А», кафедра высокомолекулярных соединений, ауд. 501.

С диссертацией можно ознакомиться в библиотеке химического факультета Московского государственного университета имени М.В. Ломоносова

Автореферат разослан «22» сентября 2011 г.

Ученый секретарь диссертационного совета, к.х.н.

Ange

Долгова А.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Полисопряженные полимеры представляют интерес с точки зрения современной химии ввиду необходимости в разработке новых материалов, которые обладают электропроводностью, низкой плотностью, и легко полвергаются переработке. Важнейшим представителем класса проводящих полимеров является полианилин (ПАНИ), отличающийся относительной простотой синтеза и высокой устойчивостью к условиям внешней среды. В настоящее время большинство работ направлены на разработку способов модификации ПАНИ, позволяющих устранить такие его недостатки как низкую растворимость в болышинстве органических и неорганических растворителей. Одним из перспективных направлений является матричный синтез ПАНИ с использоваполи-(2-акриламидо-2-метил-1поликислот, как сильных таких нием пропансульфоновая) кислота (ПАМПС) и поли-(4-стиролсульфоновая) кислота (ПСС) и перфторированных полисульфокислот, как способ получения комплексов, ориентированных на промышленное применение композиционных материалов на основе ПАНИ и сочетающих в себе высокие механические характеристики матрицы, ее устойчивость к агрессивным средам, нерастворимость в воде и т.д. с электрохимическими и химическими свойствами ПАНИ.

Цель работы состояла в изучении особенностей матричной полимеризации анилина в присутствии полисульфоновых кислот, а именно:

• в исследовании влияния количества и природы поликислоты на структуру и свойства образующихся интерполиэлектролитных комплексов (ИПЭК),

• в изучении возможности использования ИПЭК в качестве мембранных материалов для топливных элементов.

Научная новизна. В работе впервые показано, что при матричной полимеризации анилина в зависимости от осново-мольного соотношения [анилин]/[полиэлектролит] (Z) в исходной реакционной смеси образуются ИПЭК ПАНИ-полианион различного состава, обладающие различной дисперсионной устойчивостью. Установлено, что природа поликислоты не влияет на способность ПАНИ к окислительно-восстановительным, кислотно-основным взаимодействиям, но влияет на разветвленность и электронную проводимость ПАНИ в составе ИПЭК. Впервые показана возможность полимеризации анилина в водно-спиртовых смесях в присутствии перфторированных поликислот с образованием растворимых ИПЭК, обладающих пленкообразующими свойствами. Впервые установлено, что пленки, получаемые из ИПЭК на основе ПАНИ и перфторированных матриц, обладают протонной проводимостью, которая зависит от состава Z в исходной реакционной смеси. Продемонстрирована возможность управления протонной проводимостью получаемых мембран варьированием качества растворителя и химической модификацией ПАНИ в составе ИПЭК.

Практическая значимость работы. Полученные в работе результаты представляют интерес для понимания процессов матричной полимеризации ионизующихся мономеров в гомогенных условиях и могут являться основой для создания полимерных систем, предназначенных для применения в различных

3

технологиях. Композиционные материалы на основе ИПЭК ПАНИперфторированная полисульфокислота могут найти применение в промышленности в качестве мембран для среднетемпературных и низкотемпературных водородных топливных элементов с твердой полимерной мембраной, компонентов электрохромных устройств и мембран для обессоливания воды.

Апробация работы. Результаты работы были доложены на международной конференции «Европейский полимерный конгресс 2005» (Москва, 2005), 1-ой европейской школе «Зеленая химия в химии полимеров» (Румыния, 2005), XIV, XV, XVII и XVIII Всероссийских конференциях «Структура и динамика молекулярных систем» (Яльчик, 2006, 2007, 2009, 2010), IV и V Всероссийской Каргинской конференции «Наука о полимерах 21-му веку» (Москва, 2007, 2010), Российской конференции с международным участием «Ионный перенос в органических и неорганических мембранах» (Туапсе, 2007) 5-ом и 6-ом международном симпозиуме «Молекулярный порядок и подвижность в полимерных системах» (Санкт-Петербург, 2005, 2008), Международной конференции «Балтийский полимерный симпозиум (Вентспилс, 2009; Паланга, 2010) Международной конференции «Проводящие полимеры» (Прага, 2011).

Публикации. Основные результаты диссертации изложены в 22 печатных работах, в том числе в 2 статьях, рекомендованных ВАК, в 6 статьях в периодических сборниках, в 1 патенте и 13 тезисах докладов на российских и международных конференциях.

Объем и структура работы. Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, обсуждения полученных результатов, выводов и списка литературы (193 наименований). Диссертация изложена на 163 страницах машинописного текста, содержит 56 рисунков и 6 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

В <u>литературном обзоре</u> рассмотрены особенности получения полианилина и композиционных материалов на его основе с использованием матричной полимеризации, проанализирована зависимость их свойств от условий синтеза.

В экспериментальной части приведены характеристики использованных реагентов, методики получения и изучения свойств ИПЭК на основе полианилина и полисульфоновых кислот, а также описаны физико-химические методы поли-(2полимерных матриц использовали качестве исследования. В акриламидо-2-метил-1-пропансульфоновую) Mw кислоту (ПАМПС, 2 000 000), поли-(4-стиролсульфоновую) кислоту (ПССК, Мw ≈ 70000), поли-(4-стиролсульфонат) натрия (ПССNа, Mw \approx 70000 и Mw \approx 1000000), MФ-4СК $(\Im B^1 = 832)$ и Nafion[®] (ЭВ = 1100 и 1000). В качестве инициатора полимеризации использовали персульфат аммония (ПСА) и лакказу, выделенную из базидиального гриба Trametes Hirsuta. Для полимеризации анилина (АНИ) в при-

¹ Эквивалентный вес – количество грамм полимера, содержащее 1 моль сульфогрупп

сутствии полианионов (ПА) к растворам полианионов (в воде для ПАМПС и ПСС и в смеси 2-пропанола и воды для перфторированных поликислот (ПФК)) добавляли водные растворы так анилин гидрохлорида, чтобы в реакционной смеси мольное соотношение [АНИ]/[ПА] (Z) в составляло 1, 2 или 3 для ПАМПС и ПСС и 0,01-1,5 при использовании ПФК), перемешивали в течение 30 мин, затем добавляли водный раствор ПСА, перемешивали и оставляли на 24 часа при комнатной температуре. Соотношение [ПСА]/[АНИ] в реакционной смеси составляло 1,25. По окончании синтеза продукт, полученный в присутствии ПАМПС или ПСС при Z = 1, осаждали раствором NaCl. Образовавшийся осадок, а также осадок, полученный в результате полимеризации АНИ при Z = 2 и 3, отфильтровывали, промывали водой и ацетоном и сушили на воздухе. Полученные растворы ИПЭК ПАНИ-ПФК в смеси 2-пропанола и воды использовали для изготовления мембран, либо меняли растворитель на N,Nдиметилацетамид (ДМАА). Пленки готовили методом полива. Растворитель испаряли в следующих режимах: для пленок из смеси 2-пропанол-вода - 10 часов при 30°С, из ДМАА – 10 часов при 70°С, затем 2 часа при 100°С. Полученные пленки обрабатывали 1М раствором HCl при 100°C в течение 3 часов, затем бидистиллированной водой при 100°С в течение 3 часов. Для модификации ИПЭК ПАНИ-ПФК 3-меркаптопропансульфоновой кислотой, пленки ИПЭК помещали добавляли NaOH, при продувании аргоном 3раствор в 1M меркаптопропансульфоновую кислоту и оставляли на сутки. Для дедопирования ПАНИ в составе ИПЭК, пленки помещали в 1M раствор NaBH4 или в гидразин гидрат на сутки. После модификации пленки промывали дистиллированной водой и последовательно обрабатывали кипячением в воде и соляной кислоте. Для измерения коэффициента набухания пленки ИПЭК ПАНИ-ПФК сушили в течение суток при температуре 60°С и давлении 10мБар, затем взвешивали и помещали в емкость с бидистиллированной водой на 30 минут (время, достаточное для достижения равновесной степени гидратации мембран), после чего производили повторное взвешивание, предварительно удалив лишнюю воду с поверхности мембран.

Для проведения матричного синтеза ПАНИ, катализируемого лакказой к 10 мл 0,015М раствора ПА в Na-цитратно-фосфатном буферном растворе (pH 3,5) добавляли 90 мкл АНИ. К полученной смеси добавляли фермент таким образом, чтобы активность лакказы в реакционной среде составляла ~ 4 МЕ.

Для изучения устойчивости образующихся в результате матричной полимеризации АНИ комплексов (Z = 1) растворы ИПЭК титровали водным раствором NaCl ([NaCl] = 4 моль/л). Для изучения устойчивости ИПЭК при действии щелочей, их растворы титровали 0,01М раствором NaOH, pH раствора определяли на pH-метре «Экотест». Раствор центрифугировали, степень депротонирования определяли на спектрофотометре. Для определения количества полисульфокислоты, не вступившей в реакцию комплексообразования при полимеризации АНИ в присутствии ПСС, надосадочную жидкость, образовавшуюся в результате реакции, титровали раствором ПЭВПБ, ([ПЭВПБ] составляла 10⁻³, 10⁻² и 10⁻¹ моль/л).

Электронные спектры реакционных смесей, а также продуктов полимеризации АНИ, продуктов взаимодействия ИПЭК ПАНИ-ПА с щелочами, кислотами, супернатантов осадков ИПЭК и т.д. записывали на спектрофотометре Helios а фирмы (Thermo Electron, Intertech Corp., CIIIA). ИК-спектры осадков, выделившихся при титровании растворов ИПЭК раствором низкомолекулярной соли, а также пленок ИПЭК ПАНИ-ПФК записывали на ИК-спектрометре Nicolet IR 200 фирмы Thermo Scientific (США). Запись спектров ЭПР реакционной смеси в процессе матричной полимеризации АНИ проводили на приборе «Рубин» (Новосибирск). Гидродинамический радиус образующегося в процессе матричной полимеризации ИПЭК ПАНИ-ПА определяли на установке «PhotoCor Complex» («Фотокор», Россия). Элементный анализ ИПЭК ПАНИ-ПА проводили на приборе «KARLO ERBA 1106» (Италия). Циклические вольтамперограммы (ЦВА) записывали на приборе µAutolabIII (Metrohm Autolab B.V.), оснащенном планарным комбинированным электродом (Русенс). Термогравиметрический анализ (ТГА) и дифференциальную сканирующую калориметрию (ДСК) проводили на приборе Netzsch STA 449С (Netzsch, Германия). Электронную проводимость продуктов полимеризации измеряли стандартным четырехточечным методом на приборе Loresta-GP MCP-T610 (Mitsubishi Chem. Corporation). Измерения протонной проводимости проводили с помощью импедансной спектроскопии двухзондовым методом на приборе AutoLab (Нидерланды). Электронномикроскопические исследования ИПЭК проводили с помощью электронного просвечивающего микроскопа Leo 912 AB Omega (Zeiss, Германия). Для контрастирования исследуемых образцов высушенные в вакууме в течение 24 часов пленки ПФК и ПАНИ-ПФК выдерживали в насыщенном растворе AgNO3.

Для изучения производительности мембран ИПЭК ПАНИ-МФ-4СК в режиме работы топливного элемента к готовым мембранам припрессовывали электроды, покрытые платинированной платиной. Полученный мембранноэлектродный блок помещали в тестовую ячейку топливного элемента. Измерения рабочих характеристик топливного элемента, а также увлажнение ячейки на аноде и катоде проводили при 70°С.

1. Обсуждение результатов.

1.1. Особенности матричной полимеризации анилин гидрохлорида в присутствии ПА при Z = 1 в исходной реакционной смеси

При добавлении к гомогенной бесцветной смеси водных растворов анилин гидрохлорида и полианиона (Z = 1, T = 21°C) водного раствора персульфата аммония ([ПСА]/[АНИ]=1,25) в электронных спектрах реакционной смеси через 8 мин появляется полоса поглощения при 630 нм, соответствующая поглощению экситона хиноидных колец и полоса поглощения при 350 нм, которая соответствует π - π * электронному переходу бензоидных колец, интенсивность которых непрерывно увеличивается вплоть до 15 минуты. Через 15 минут после начала реакции полосы при 350 и 630 нм сдвигаются к 370 и 720 нм соответственно,

одновременно с этим сдвигом в спектре появляется плечо при 420 нм, которое отвечает поглощению катион-радикалов в цепи ПАНИ. При проведении полимеризации в 5-кратном избытке ПСА стадия сдвига полосы не наблюдается, а через сутки реакционная смесь обесцвечивается. Добавление водно-спиртового раствора NaOH к обесцвеченной реакционной смеси приводит к появлению бурой окраски, что указывает на образование п-бензохинона. Таким образом, в избытке окислителя образуется продукт, содержащий в основном хинондииминные звенья, который, с течением времени в водных растворах подвергается гидролизу, а сдвиг полосы поглощения, наблюдаемый в присутствии эквимольного количества окислителя, вызван восстановлением продукта полимеризации оставшимся в растворе анилин гидрохлоридом после исчерпания окислителя. Восстановление хинондииминных фрагментов анилин гидрохлоридом в соль эмеральдина сопровождается появлением в электронном спектре полосы поглощения при 420 нм и сигнала ЭПР, что можно однозначно связать с образованием ПАНИ в форме эмеральдиновой соли. При этом как в процессе полимеризации, так и после ее окончания фазового разделения в реакционной смеси не наблюдается, что связано с образованием растворимого интерполиэлектролитного комплекса.

Гидродинамические характеристики ИПЭК, образующихся в результате полимеризации анилина в присутствии различных матриц, и их зависимость от природы и молекулярной массы используемой матрицы изучали с помощью динамического светорассеяния. Невозмущенный электростатическими взаимодействиями гидродинамический радиус (R_{hT}) ПСС и ПАМПС оценивали по формуз <u>М</u>

ле $R_{hT} = \frac{3}{5} \sqrt{\frac{MA}{M_L 6}}$, где М – молекулярная масса полимера. Молекулярный вес

единицы длины цепи полимера M_L принимали равным $8 \cdot 10^9$ и 7,7 $\cdot 10^9$ Да/см, длину сегмента Куна A равной 1,8 нм для ПССК (или ПССNа) и 2,2 нм для ПАМПС, что соответствует равновесной жесткости молекул этих полимеров в экранированном состоянии. Полученные значения R_{hT} для ПССК ($M_W = 70\ 000$) и ПССNa ($M_W = 1\ 000\ 000$) практически совпадают с гидродинамическим радиусом R_h их молекул, измеренным в 0,1 М водном растворе NaCl (Таблица 1).

Таблица 1. Гидродинамические и молекулярно-массовые характеристики растворов ПА и ИПЭК на их основе.

Образец	Растворитель	М _W (ПА)	R _h , нм	R _{hT} , нм
ПССК	0,1M NaCl	70 000	3,5	3,2
ПССМа	0,1M NaCl	1 000 000	11,6	11,5
ПАМПС	-	2 000 000	-	18,5
ПССК - АНИ	H ₂ O	70 000	5,1	-
ПССМа - АНИ	H ₂ O	1 000 000	13,1	-
ПАМПС-АНИ	H ₂ O	2 000 000	24	-
ПАНИ-ПССК	H ₂ O	70 000	22	-
ПАНИ-ПССМа	H ₂ O	1 000 000	23	-
ПАНИ-ПАМПС	H ₂ O	2 000 000	32	-

Как видно из таблицы, при добавлении к водным растворам полиэлектролита водного раствора АНИ наблюдается незначительное увеличение гидродинамического радиуса полиэлектролитных матриц, что указывает на слабую сорбцию молекул АНИ полиэлектролитной матрицей.

На рис. 1 приведены зависимости гидродинамического радиуса ИПЭК, образующихся в результате матричной полимеризации АНИ при Z = 1, и оптической плотности реакционной смеси при 630 нм от времени.

Рис. 1. Зависимость поглощения при 630 нм и величины гидродинамического радиуса R_h от времени t в реакционсодержаных смесях, АНИ. ПССК, ших ПССМа или ПАМПС и ПСА ([АНИ] = [ПА] = 10^{-3} моль/л, $[\Pi CA]/[AHH] = 1,25), \theta$ $= 90^{\circ}, T = 25^{\circ}C.$

Видно, что после добавления водного раствора персульфата аммония к смеси, содержащей АНИ, ПССК, ПССNa или ПАМПС, в системе наблюдается период, составляющий примерно 3-5 минут, при котором оптическая плотность реакционной смеси остается практически равной нулю, а гидродинамический радиус ИПЭК равен R_h соответствующей матрицы в присутствии АНИ. На данном этапе происходит инициирование реакции, которое представляет собой окисление АНИ персульфатом аммония, не приводящее к изменению гидродинамического радиуса матрицы. По истечении указанного периода начинается автокаталитическая стадия, во время которой оптическая плотность реакционной массы и гидродинамический радиус ИПЭК резко возрастают. Данный процесс соответствует накоплению в реакционной массе окисленных цепей ПАНИ. Анализ кинетики матричной полимеризации при варьировании количества поликислоты ([АНИ] = const) показал, что в процессе синтеза происходит присоединение матрицей коротких цепей ПАНИ, образовавшихся в объеме раствора (Схема 1). Схема 1. Механизм образования ИПЭК в процессе матричной полимеризации.

Затем цепи ПАНИ продолжают расти внутри клубка полианиона за счет присоединения нитрений-катионов к олигомерам пернигранилина. Длительность данного процесса составляет около 4 минут, после чего гидродинамический радиус ИПЭК достигает своего равновесного значения, которое далее остается неизменным. Размеры частиц комплексов, полученных в присутствии разных по ММ и химической структуре матриц, оказываются близкими (Таблица 1).

Сопоставив гидродинамические размеры частиц комплексов ПАНИ-ПССК (70 000) и ПАНИ-ПССNа (1 000 000) мы проанализировали состав и строение образующихся ИПЭК. Расчеты показали, что комплексы ПАНИ-ПА ведут себя подобно частицам с постоянной плотностью и представляют собой агрегаты, включающие в себя от 5 для ПССNa (1 000 000) до 80 для ПССК (70 000) молекул ПА, связанных с ИПЭК с полианилином.

1.2. Структура и химические свойства ПАНИ, полученного матричной полимеризацией анилина в присутствии полисульфоновых кислот при соотношении Z = 1 в исходной реакционной смеси

Растворы ИПЭК ПАНИ-ПА, полученные при Z = 1, способны подвергаться депротонированию, сопровождающемуся снижением интенсивности полосы поглощения соли эмеральдина при 750 нм и возрастанием интенсивности полосы попоглощения эмеральдинового основания при 550 нм, без фазового разделения. Измерения динамического рассеяния света в растворах комплексов при pH = 11

9

показали, что гидродинамический радиус ИПЭК не изменяется при добавлении щелочи и составляет 23 нм (Таблица 1). Добавление ПСА к раствору ИПЭК вызывает окисление ПАНИ, сопровождающееся смещением полосы поглощения из области 760 нм в область 650 нм, также без образования осадка в системе.

Известно, что растворимые ИПЭК, образованные с участием сильной поликислоты и слабого основания при определенном значении ионной силы диспропорционируют, в результате чего образуются частицы стехиометричного комплекса, которые выделяются в нерастворимую фазу, а в растворе остается свободный полиэлектролит. Образование нерастворимой темно-зеленой фазы в комплексах начинается после достижения ионной силы раствора 0,4 моль/л, а полное осаждение комплексов происходит при [NaCl] = 1 моль/л. Анализ состава сосуществующих фаз методами турбидиметрического титрования, электронной и ИК-спектроскопии показал отсутствие поликислот в надосадочной жидкости. В ИК-спектрах осадков присутствуют характеристические полосы поглощения ПАНИ с максимумами в области 1552-1562 см⁻¹ и 1463-1473 см⁻¹, которые соответствуют валентным колебаниям хиноидных и бензоидных колец. Полоса поглощения при 1300 см⁻¹ относится к валентными колебаниями связи С-N ароматических колец ПАНИ. Полосы в области 1215-1242 см¹ и 1130-1155 см⁻¹ характерны для валентных колебаний связи C-N⁺ поляронных фрагментов ПАНИ и деформационных внутриплоскостных колебаний связи С-Н фрагментов N=O=N, O-N⁺H-B, B-N⁺H-В ПАНИ, где Q – хиноидное кольцо, В – бензоидное кольцо соответственно. Кроме того, в спектре ИПЭК ПАНИ-ПСС присутствуют полосы поглощения в области 1030 и 1006 см⁻¹, которые относятся к симметричным валентным колебаниям группы S=О и внутриплоскостным колебаниям бензольного кольца ПСС соответственно. В ИК-спектре ИПЭК ПАНИ-ПАМПС присутствуют характерные для ПАМПС полосы поглощения при 1640 и 1030, которые соответствуют составным колебаниям амидной группы ПАМПС и симметричным валентным колебаниям S=O. Полосы поглощения обоих ИПЭК, характерные для сульфогрупп (1030 см⁻¹), оказываются смещенными в область меньших волновых чисел по сравнению с положением характеристических полос поликислот, что указывает на образование солевых связей между компонентами, входящими в состав нерастворимой фазы. В ИК-спектре ИПЭК ПАНИ-ПСС присутствует широкая полоса поглощения при 800 см⁻¹, характерная для деформационных колебаний 1,4-замещенных бензольных колец ПСС и ПАНИ. В ИК-спектре ИПЭК ПАНИ-ПАМПС присутствуют полосы при 800 см⁻¹ и 750 см⁻¹, которые относятся к внеплоскостным деформационным колебаниям связи С-Н 1,4- и 1,2-замещенных колец ПАНИ соответственно, что указывает на нерегулярность строения его цепей.

На циклических вольтамперных (ЦВА) кривых пленок ИПЭК наблюдаются два пика при ~ 0,2 и 0,6 В относительно хлорсеребряного электрода (х.с.э.), которые соответствуют процессам окисления ПАНИ из лейкоэмеральдиновой формы в эмеральдиновую соль и окислению эмеральдиновой соли ПАНИ до протонированного пернигранилина соответственно. При этом в обоих спектрах

10

присутствует пик при 0,4 В, который наиболее выражен для ИПЭК ПАНИ-ПАМПС и который можно отнести к фрагментам ПАНИ, образовавшимся в результате орто-присоединения. Объяснением разветвленности ПАНИ, входящего в состав ИПЭК ПАНИ-ПАМПС, может быть влияние природы полиэлектролитной матрицы, поскольку ПАМПС, в отличие от ПСС, способен образовывать водородные связи NH…О между амидной группой ПАМПС и фенилендиаминным фрагментом ПАНИ, что приводит к равновероятному присоединению мономера как в пара-, так и в орто-положение к аминогруппе растущей цепи ПАНИ.

Состав осадков, образующихся при введении NaCl в растворы ИПЭК ПАНИ-ПАМПС и ПАНИ-ПСС, определен элементным анализом. Соотношение N:S для ИПЭК ПАНИ-ПСС составляет 1,55:1 (N – 4,01; S – 6,25 масс.%) и 2,55:1 для ПАНИ-ПАМПС (N – 7,6; S – 6,8 масс.%). Сравнение теоретически вычисленных значений N:S с экспериментальными указывает на образование нестехиометричных ИПЭК, в которых не все сульфогруппы участвуют в образовании солевых связей с ПАНИ – часть из них остается свободными и обеспечивают дисперсионную устойчивость ИПЭК.

В таблице 2 представлены результаты ТГА для ИПЭК ПАНИ-ПСС и ПАНИ-ПАМПС.

ипэк	Первый энд пик	цотермический	Второй эндотермический пик		
	Температура начала поте- ри массы, °С	Потери мас- сы, %	Температура начала потери массы, °С	Потери массы, %	
ПАНИ-ПСС	62	13,2	220	21,3	
ПАНИ- ПАМПС	56	7,5	220	22,2	

Таблица 2. Результаты ТГА для ИПЭК ПАНИ-ПА.

Кривые ДСК ИПЭК характеризуются двумя эндотермическими пиками, первый из которых по данным ТГА сопровождается потерей массы в размере 7-13% от общей массы образца, что связано с удалением воды из комплексов. Для ИПЭК ПАНИ-ПСС сигнал ДСК достигает минимального значения при 95,3°С, а потери массы начинаются с 62°С и заканчиваются приблизительно при 180°С и составляют 13,22%. Образец ИПЭК ПАНИ-ПАМПС характеризуется минимумом сигнала ДСК при 73,1°С, при этом потери массы также начинаются с 56°С и заканчиваются при 220°С и составляют 7,50%. Второй эндотермический пик на кривых ДСК при 310-325°С и 220-325°С, для ПАНИ-ПСС и ПАНИ-ПАМПС соответственно, связан с разложением поликислоты в составе комплекса. Таким образом, потери массы образца практически не зависят от природы использованной поликислоты.

При разложении натриевой соли ПСС при указанных выше температурах

потери массы образца из-за деструкции составляют всего 6%, а разложение ПАНИ в форме эмеральдинового основания происходит при более высоких температурах (~ 450°С). Разложение ИПЭК сопровождается более интенсивными потерями массы по сравнению с индивидуальными компонентами, что указывает на то, что поликислота в составе ИПЭК распадается по иному механизму по сравнению с ее натриевой солью. Иными словами, механизм разложения ИПЭК включает в себя депротонирование ПАНИ с образованием его эмеральдинового основания и образование полисульфокислоты, которая затем распадается по радикальному механизму. Таким образом, использование поликислот в процессе получения ПАНИ вместо низкомолекулярных кислот позволяет увеличить термостабильность ПАНИ.

1.3. Структура и свойства ИПЭК ПАНИ-ПА, полученных в результате матричной полимеризации АНИ при Z = 2 и 3 в исходной реакционной смеси

При увеличении соотношения Z в результате матричной полимеризации АНИ можно получить ограниченно устойчивые дисперсии или осадки ИПЭК. Ограниченно устойчивые дисперсии (Z = 2) легко выделяются при центрифугировании без дополнительного добавления низкомолекулярных солей и в электронных спектрах содержат полосы поглощения при 370 нм, 650-800 нм, а также плечо при 420 нм, характерные для ПАНИ в форме эмеральдиновой соли.. ИК-спектры таких осадков аналогичны ИК-спектрам осадков нестехиометричных ИПЭК ПАНИ-ПАМПС и ПАНИ-ПСС (Z = 1), а присутствующие в них полосы пропускания, характерные для сульфогрупп, также оказываются смещенными в область меньших волновых чисел, что указывает на образование солевых связей между ПАНИ и поликислотами. Согласно данным турбидиметрического титрования супернатантов реакционных смесей, из которых выделяются нерастворимые ИПЭК, растворами П4ЭВП, поликислоты, участвующие в матричной полимеризации, количественно выделяются в нерастворимую фазу. По данным элементного анализа для ИПЭК найдено, что N:S составляет 1.73:1 для ПАНИ-ПСС (Z = 2), что указывает на образование нестехиометричного комплекса. Для комплексов, полученных при Z = 3, найдено, что N:S составляет 2,14:1 (N - 7,04; S - 7,52%) для ПАНИ-ПСС и 2,92:1 (N - 9,85; S - 7,74%) и ПАНИ-ПАМПС соответственно, что указывает на образование стехиометричных комплексов. Термогравиметрический анализ и дифференциальная сканирующая калориметрия ИПЭК ПАНИ-ПСС (Z = 2 и 3) и ПАНИ-ПАМПС (Z = 3) не показали существенных различий в температурах дегидратации и деструкции комплексов по сравнению с ИПЭК ПАНИ-ПА (Z = 1). Так, температура начала дегидратации ИПЭК ПАНИ-ПСС (Z = 2) составляет 67°С, ПАНИ-ПСС (Z = 3) -64°С, а ИПЭК ПАНИ-ПАМПС (Z = 3) - 60°С, при этом потери массы образцов составляют 12,8, 10,0 и 8,0% соответственно. Температура начала разложения ИПЭК для ПАНИ-ПСС (Z = 2) составляет 200°С (потери массы 19,5%), ПАНИ-ПСС (Z = 3) - 180°С (потери массы 22.2%) и 210°С для ПАНИ-ПАМПС (Z = 3) (потери массы 26,3%).

Таким образом, в результате полимеризации АНИ при различных Z возможно получать ИПЭК, различающиеся количеством сульфогрупп, участвующих в комплексообразовании с ПАНИ, и обладающих различной дисперсионной устойчивостью в водных растворах. При этом варьирование содержания поликислоты в таких комплексах практически не отражается на их термической устойчивости.

1.4. Электронная проводимость и морфология ИПЭК ПАНИ-ПА

В таблице 3 приведены данные электронной проводимости ИПЭК ПАНИ-ПА, полученных при различных Z в исходной реакционной смеси.

Таблица 3. Электронная проводимость ИПЭК ПАНИ-ПА.

Комплекс	[АНИ]/[ПСС]	[АНИ]/[ПСС]	[АНИ]/[ПСС]	[АНИ]/[ПАМПС]	[АНИ]/[ПАМПС]
	= 1	= 2	= 3	= 1	= 3
Электрон- ная прово- димость, См/см	7,3×10 ⁻²	1,4×10 ⁻¹	1,2×10 ⁻¹	2,8×10 ⁻²	1,5×10 ⁻¹

Видно, что в случае ПАНИ-ПССК, полученных при Z = 2 и 3, электронная проводимость ИПЭК оказывается незначительно выше электронной проводимости ИПЭК ПАНИ-ПССК, полученного при Z = 1. Для ИПЭК ПАНИ-ПАМПС электронная проводимость стехиометричного комплекса в 5 раз выше электронной проводимости нестехиометричного ИПЭК. Как было показано выше, ИПЭК ПАНИ-ПА (Z = 1) представляют собой агрегаты, размеры которых не зависят от природы и молекулярной массы ПА, что указывает на то, что основомольное количество звеньев ПА для таких агрегатов равно. Таким образом, влияние ПА на электронную проводимость заключается в его способности образовывать водородные связи и приводить к образованию 1,2-замещенных бензоидных колец в составе цепей ПАНИ, нарушающих цепь сопряжения и препятствующих делокализации катион-радикалов.

1.5. Сравнение матричной полимеризации анилина, катализируемой лакказой *Trametes hirsuta* и ПСА.

Обычно химический синтез ПАНИ проводится сильнокислой среде, требует больших количеств окислителя, а также может приводить к образованию токсичных побочных продуктов. Эффективным биокатализатором полимеризации анилина может являться лакказа. Для изучения особенностей матричной полимеризации, катализируемой лакказой, и выяснения различий между химическим и ферментативным матричным синтезом на протяжении реакции измеряли потенциал разомкнутой цепи реакционной смеси и регистрировали электронные спектры в области 300-900 нм (рис. 2 и 3).

Рис. 2. Временная зависимость потенциала разомкнутой цепи (1) и интенсивности поглощения при 600 нм (2) для реакционной смеси, содержащей АНИ, ПАМПС и ПСА ([АНИ] = [ПАМПС] = 10^{-2} моль/л, [ПСА] = $1.25 \cdot 10^{-2}$ моль/л)

При добавлении раствора ПСА к смеси АНИ и ПА в цитратно-фосфатном буферном растворе (рН 3,5, рис. 2) наблюдается резкое возрастание потенциала реакционной смеси (∆E ≈ 45 мВ, точка 1). Через 10 мин потенциал уменьшается и достигает своего минимального значения ($\Delta E \approx -100$ мВ, точка 2). При этом в электронных спектрах реакционной смеси не наблюдается появления полос поглощения в видимой области спектра, характерных для окисленных олигомеров ПАНИ. Рост потенциала начинается через 25 мин и не сопровождается изменением оптической плотности в области 300-900 нм, т.е. на указанном этапе происходит окисление АНИ персульфатом аммония с образованием нитренийкатионов. Через 50 мин в электронных спектрах появляется и возрастает оптическая плотность в области 600 нм, которая соответствует накоплению в реакционной массе окисленных цепей ПАНИ, а скорость роста потенциала уменьшается (на кривой зависимости Е от t наблюдается перегиб, ∆E ≈ 170 мВ, точка 3). Через 130 мин после начала полимеризации потенциал и оптическая плотность реакционной смеси при 600 нм достигают максимального значения (∆Е ≈ 230 м \hat{B} , $\Delta A \approx 16$ отн.ед.). Затем в течение 5 мин происходит уменьшение потенциала ($\Delta E \approx -200 \text{ мB}$) реакционной смеси, а в электронных спектрах наблюдается сдвиг полосы поглощения при 600 нм в длинноволновую область (к 730 нм). Поскольку ПСА в кислой среде распадается постепенно, а потенциал окисления растущих цепей ПАНИ несколько ниже по сравнению с потенциалом окисления анилина, в процессе полимеризации АНИ в присутствии ПСА растущие цепи ПАНИ постоянно находятся в окисленном состоянии, а в реакционной массе даже в присутствии ПСА остается некоторое количество неокисленного АНИ. Затем, после полного разложения ПСА, окисленные цепи ПАНИ восстанавливаются непрореагировавшим АНИ до эмеральдиновой соли.

При полимеризации АНИ в присутствии ПА сразу после добавления фермента в реакционную смесь наблюдается резкое возрастание потенциала ($\Delta E \approx 60$ мВ). По мере протекания реакции потенциал реакционной смеси монотонно уменьшается. В электронных спектрах наблюдается рост интенсивности поглощения реакционной смеси в области 700 нм (рис. 3).

Рис. 3. Временная зависимость электрохимического потенциала разомкнутой цепи (1) и оптической плотности при 700 нм (2) для реакционной смеси, содержащей АНИ, ПАМПС и лакказу ([АНИ] = [ПАМПС] = 10⁻² моль/л, активность лакказы 4 МЕ).

При матричной полимеризации АНИ с использованием лакказы стадии образования окисленных продуктов ПАНИ не наблюдается.

В результате матричной полимеризации анилина в присутствии ПА и ПСА или лакказы в цитратно-фосфатном буфере (pH 3,5) образуются нестехиометричные ИПЭК, в состав которых включен ПАНИ в форме эмеральдиновой соли. В ИК-спектрах ИПЭК присутствуют характеристические полосы пропускания ПАНИ и ПА. В области деформационных колебаний бензольных колец (900-700 см⁻¹) ИК-спектры ИПЭК ПАНИ-ПА, полученных при pH 3,5 как химической, так и ферментативной полимеризацией, содержат полосы пропускания при 805 и 881 см⁻¹, что указывает на наличие 1,2,4-замещенных бензоидных колец в цепях ПАНИ.

Электронная проводимость получаемых комплексов составляет ~2·10⁻³ См/см, что на порядок ниже по сравнению с ИПЭК, синтезированных химической полимеризацией при pH 2.

Таким образом, основное влияние на структуру полимерных цепей ПАНИ в данном случае оказывает pH реакционной смеси, повышение которого приводит к появлению 1,2,4-замещенных ароматических колец ПАНИ и свидетельствует о разветвленности основной цепи полианилина или о наличии феназиновых фрагментов, а наличие фермента в реакционной смеси не оказывает специфического влияния.

2.1. Особенности матричной полимеризации АНИ в присутствии перфторированных полисульфокислот

Существенным недостатком пленок ИПЭК на основе полианилина и ПАМПС (или ПСС), полученных как химической, так и ферментативной полимеризацией, является их хрупкость. Перфторированные полисульфокислоты (**ПФК**) являются суперкислотами и обладают хорошими пленкообразующими свойствами. Нами обнаружено, что при полимеризации АНИ в присутствии

ПФК в смеси 2-пропанола и воды образуются гомогенные растворы, в которых по данным электронной спектроскопии ПАНИ находится в форме эмеральдиновой соли и характеризуется полосой поглощения при 720 нм, что позволяет заключить. что продуктами полимеризации АНИ в присутствии ПФК являются ИПЭК нестехиометричного состава. При исследовании матричной полимеризации АНИ в водно-2-пропанольной смеси оказалось, что при всех соотношениях Z в исходной реакционной смеси наблюдается матричный эффект с максимальным выходом ПАНИ при содержании воды в реакционной смеси ≤ 11,33%. ИКспектры продуктов полимеризации содержат характеристические полосы поглошения полианилина в области 1600 и 1450 см⁻¹, которые относятся к валентным колебаниям С=С в хиноидных и С-С в бензоидных кольцах ПАНИ соответственно. а также полосы, характерные для ПФК, при 980 (симметричные валентные колебания связи С-О-С), 1100-1350 (валентные колебания связи С-F фтороуглеродного скелета) и 1050 см⁻¹ (симметричные валентные колебания связи S-O сульфогруппы), которые оказываются смещенными в область меньших волновых чисел, что указывает на наличие солевых связей между ПАНИ и ПФК. Рассмотрим ИК-спектры в области колебаний водородных связей для ИПЭК, полученных при Z = 0,75, 0,5, 0,1, которые представлены на рис. 4.

Рис. 4. ИК-спектры пленки МФ-4СК (1) и пленок комплексов, полученных при Z = 0,1 (2), 0,5 (3) и 0,75 (4) в области колебаний водородных связей.

Видно, что во всех спектрах присутствует полоса поглощения при 3250 см⁻¹, отвечающая валентным колебаниям О-Н сульфогрупп и обычно проявляющаяся при дегидратации мембран перфторированных полисульфокислот, и полоса при 3450-3390 см⁻¹, которую относят к валентным колебаниям О-Н молекул воды, связанных водородными связями с эфирной группой перфторированных сульфокислот, и кластеров состава $H_{2n+1}O_{n+}$, связанных с сульфогруппам. В ИКспектрах ИПЭК также присутствуют полосы при 2850 и 2920 см⁻¹, которые относят как к валентным колебаниям -NH⁺, так и к валентным колебаниям N-H фрагментов --C₆H₄-NH-C₆H₄- полианилина. Отношение интенсивностей полос $\frac{A_{3450}}{A_{3250}}$ указывает на степень гидратации мембран. Указанное отношение для МФ-

4СК составляет 0,964, а для ИПЭК зависит от Z и уменьшается при увеличении количества АНИ в исходной реакционной смеси. Так, при Z = 0,75 оно составляет 0,418, при Z = 0,5 - 1,036, а при Z = 0,1 - > 1. Таким образом, наибольшая степень гидратации мембран наблюдается для ИПЭК, полученных при соотношении Z < 0,1 в исходной реакционной смеси. Поскольку сульфоновые группы эффективно сорбируют воду на рис. 5 представлены зависимости коэффициентов набухания мембран ПФК и ИПЭК на их основе от состава Z в исходной реакционной смеси.

Рис. 5. Зависимость коэффициента набухания мембран, полученных из ИПЭК ПАНИ-Nafion[®] (ЭВ = 1100) (1), ПАНИ-Nafion[®] (ЭВ = 1000) (2) и ПАНИ-МФ-4СК (ЭВ = 832) (3), от Z (T = 80°C).

Видно, для мембран ПФК коэффициент набухания увеличивается с 47 до 78% при уменьшении эквивалентного веса с 1100 до 832 соответственно. Для мембран ИПЭК ПАНИ-Nafion[®], коэффициент набухания возрастает при увеличении Z в исходной реакционной смеси и выходит на плато при Z > 0,02. При этом, введение ПАНИ в виде ИПЭК увеличивает коэффициент набухания непропорционально: так при Z = 0,01 коэффициент набухания для ПАНИ-Nafion 1100 возрастает с 46 до 49%, а для ПАНИ-Nafion 1000 - с 53 до 62% по сравнению с чистыми ПФК. Для мембран ИПЭК на основе МФ-4СК, наблюдается незначительное уменьшение коэффициента набухания при увеличении Z.

Известно, что протонная проводимость Nafion[®] и подобных ему материалов непосредственно связана с влагосодержанием. Представляло интерес убедиться, что это справедливо и для ИПЭК на основе ПФК. Соответствующие зависимости протонной проводимости ИПЭК ПАНИ-ПФК от Z приведены на рис. 6.

Рис. 6. Зависимость протонной проводимости пленок ИПЭК ПАНИ: Nafion[®] (ЭВ = 1100) (l), ПАНИ: Nafion[®] (ЭВ = 1100) (2) и ПАНИ:МФ-4СК (ЭВ = 832) (3) от Z в исходной реакционной смеси.

Вилно. что в случае Nafion[®], при переходе от мембраны ПФК к мембранам ИПЭК протонная проводимость практически не изменяется, хотя содержание воды увеличивается (см. рис. 5). Однако для мембран на основе Nafion[®] 1000 и МФ-4СК на зависимостях протонной проводимости от Z наблюдается максимум при Z = 0.02. причем в обоих случаях протонная проводимость мембран ИПЭК оказывается выше по сравнению с протонной проводимостью исходных ПФК и составляет 0,034 и 0,102 См/см для ПАНИ-Nafion[®] 1000 и ПАНИ-МФ-4СК соответственно. Таким образом, совокупность данных по протонной проводимости и коэффициенту набухания свидетельствуют о том, в мембранах ИПЭК присутствует достаточно много закрытых гидрофильных полостей или каналов, разделенных между собой гидрофобными полимерными цепями. Такие закрытые полости-«ловушки» способны поглощать воду (см. рис. 5), но это поглощение воды не приводит к возникновению проводящих каналов, по которым осуществляется перенос протонов. Такие каналы обычно образуются за счет сегрегации гидрофобной полимерной цепи и связанной с ней гидрофильными сульфогруппами. Структурой, возникающей при микрофазовом разделении, можно управлять, изменяя диэлектрическую проницаемость растворителя, которая влияет на степень диссоциации заряженных групп и сродство растворителя к гидрофобному фрагменту полимерной цепи, т.е. параметр растворимости.

Известно, что ПФК можно приписать два параметра растворимости $\delta_1 = 9,7$ (кал/см³)^{1/2} и $\delta_2 = 17,3$ (кал/см³)^{1/2}, относящиеся к перфторированному углеродному скелету и гидрофильным боковым цепям соответственно. Смесь 2-пропанола и воды ($\phi(H_2O) = 11,33$ об.%) имеет параметр растворимости ($\delta_{S1} = 13,1$ (кал/см³)^{1/2}, $\varepsilon = 26,7$) и является плохим растворителем как для фтороуглеродного скелета ПФК так и гидрофильных боковых цепей, т.е. молекулы МФ-4СК находятся в компактной конформации. При использовании в качестве растворителя N,N-диметилацетамида (ДММА) с параметром растворимости, близким к параметру растворимости фтороуглеродного скелета ($\delta_{S2} = 10,8$ (кал/см³)^{1/2}, $\varepsilon = 37,8$), в растворе фтороуглеродный скелет ПФК будет находить-

ся в развернутой конформации и максимально контактировать с растворителем, не образуя агрегатов. Следует ожидать, что структура и морфология мембран, приготовленных из ДМАА и смеси 2-пропанол-вода, будет отличаться, что должно привезти к изменению коэффициента набухания и величины протонной проводимости. В таблице 4 приведены значения коэффициентов набухания и протонной проводимости мембран МФ-4СК и мембран ИПЭК ПАНИ-МФ-4СК состава Z = 0,02 в исходной реакционной смеси, отлитых из ДМАА и смеси 2пропанола и воды.

Таблица 4. Значения коэффициентов набухания и протонной проводимости мембран МФ-4СК и ИПЭК ПАНИ-МФ-4СК (Z = 0,02), отлитых из ДМАА и смеси 2-пропанола и воды.

Растворитель	2-пропанол-вода		ДМАА	
Состав мембраны	МФ-4СК	ПАНИ-МФ- 4СК	МФ-4СК	ПАНИ-МФ- 4СК
Коэффициент набухания. %	78	70	46	73
Протонная проводимость,	0,080	0,100	0,045	0,063
См/см	l	L	<u> </u>	<u> </u>

Из таблицы 4 видно, что коэффициент набухания и значение протонной проводимости мембраны МФ-4СК отлитой из смеси 2-пропанола и воды, оказывается в 1,7 раза выше коэффициента набухания и протонной проводимости мембраны МФ-4СК, отлитой из ДМАА. Этот результат свидетельствует о том, что структурой мембран действительно можно управлять. В отличие от мембран МФ-4СК мембраны ИПЭК менее подвержены влиянию качества растворителя. Для мембран ИПЭК, полученных из смеси 2-пропанола и воды наблюдается незначительное уменьшение коэффициента набухания с 78% до 70%, которое сопровождается ростом протонной проводимости. Увеличение значения протонной проводимости, которое сопровождается уменьшением коэффициента набухания, указывает на то, что организация транспортных каналов улучшилась, и уменьшилось количество «слепых» каналов. В мембранах ИПЭК, полученных из ДМАА также наблюдается увеличение протонной проводимости и коэффициента набухания по сравнению с мембранами МФ-4СК.

При этом, как правило, чем выше коэффициент набухания мембран, тем выше значения протонной проводимости.

Таким образом, из совокупности приведенных данных следует, что микроструктура МФ-4СК более чувствительна к растворителю, чем микроструктура ИПЭК.

2.2. Химическая модификация ПАНИ в составе ИПЭК

Хиноидные кольца ПАНИ в форме эмеральдинового основания способны участвовать в реакции нуклеофильного присоединения (рис. 7).

Рис. 7. Нуклеофильное присоединение МПС к хиноидным кольцам ПАНИ.

В качестве нуклеофила нами была выбрана 3меркаптопропансульфокислота (МПС), которая позволяет ввести дополнительное количество сульфогрупп в ИПЭК. Для модификации мембраны ИПЭК, полученные при различных Z в исходной реакционной смеси, помещали в 1М раствор шелочи, в который при продувании аргоном добавляли 10-кратный избыток МПС по отношению к АНИ в исходной реакционной смеси. На рис. 8 приведены зависимости протонной проводимости исходных мембран, полученных при различных Z, и мембран, модифицированных МПС.

Рис. 8. Зависимости протонной проводимости мембран ИПЭК от Z в исходной реакционной смеси до и после их модификации МПС.

Видно, что протонная проводимость мембран, не подвергавшихся обработке МПС, проходит через максимум при Z = 0,05 и достигает значения 0,1 См/см. В результате модификации мембран с использованием МПС протонная проводимость при Z < 0,1 практически не изменяется. При составах Z > 0,1 протонная проводимость модифицированных мембран возрастает с 0,01 См/см до 0,14 См/см, что обусловлено увеличением количества ПАНИ в составе мембран и, следовательно, увеличением удельного количества сульфогрупп. Таким образом, протонную проводимость пленок ИПЭК можно регулировать не только изменением Z в исходной реакционной смеси, но и обработкой мембран МПС.

Поскольку ИПЭК ПАНИ-ПФК содержит в своем составе ПАНИ в форме эмеральдиновой соли, мембраны, получаемые из таких ИПЭК, обладают незначительной электронной проводимостью ~ 10⁻⁵ См/см. Величину электронной проводимости мембраны ИПЭК, можно изменить обработкой эмеральдиновой соли ПАНИ гидразингидратом или боргидридом натрия, которые способны восстанавливать соль эмеральдина до лейкоэмеральдина. При восстановлении ПАНИ, включенного в ИПЭК ПАНИ-ПФК электронная составляющая проводимости уменьшается на с 10⁻⁵См/см до 10⁻⁷См/см. При этом протонная составляющая проводимости не только сохраняется, но и возрастает в 2-3 раза. Таким образом, протонную и электронную проводимость получаемых ИПЭК можно целенаправленно регулировать обработкой мембран восстановителями.

Выводы

- Впервые показано, что частицы интерполиэлектролитного комплекса (ИПЭК) на основе полианилина и полисульфоновых кислот представляют собой агрегаты, которые включают в себя различное количество макромолекул полианиона в зависимости от его молекулярной массы. Установлено, что природа полианиона не влияет на способность полианилина к химическим взаимодействиям, но влияет на разветвленность и электронную проводимость полианилина в составе ИПЭК.
- Установлено, что при матричной полимеризации анилина в зависимости от осново-мольного соотношения мономера и полианиона в исходной реакционной смеси образуются интерполиэлектролитные комплексы полианилинполианион различного состава.
- 3. Впервые показана возможность полимеризации анилина в водно-спиртовых смесях в присутствии перфторированных поликислот с образованием растворимых интерполиэлектролитных комплексов, обладающих пленкообразующими свойствами. Установлено, что получаемые из ИПЭК на основе полианилина и перфторированных поликислот мембраны обладают протонной проводимостью, которая зависит от осново-мольного соотношения мономера и полианиона в исходной реакционной смеси.
- Продемонстрирована возможность управления протонной проводимостью получаемых мембран варьированием качества растворителя и химической модификацией полианилина в составе комплекса.

Основные результаты изложены в следующих публикациях

- 1. Боева Ж.А., Пышкина О.А., Лезов А.А., Полушина Г.Е., Лезов А.В., Сергеев В.Г. Матричный синтез водорастворимого полианилина в присутствии полиэлектролитов. // Высокомол. Соед. С. 2010. Т. 52. № 7. С. 1267–1276.
- Shumakovich G.P., Vasil'eva I.S., Morozova O.V., Khomenkov V.G., Staroverova I.N., Budashov I.A., Kurochkin I.N., Boyeva J.A., Sergeyev V.G., Yaropolov A.I. A comparative study of water dispersible polyaniline nanocomposites prepared by laccase-catalyzed and chemical methods. // J. Appl. Polym. Sci. 2010. V. 117. No3.

P. 1544-1550.

- 3. Боева Ж., Пышкина О., Сергеев В., Махаева Е., Хохлов А., Шин Чонг Кью, Годовский Д., Ли Мин Чжон. "Полимерные мембраны для топливных элементов, основанные на интерполиэлектролитных комплексах полианилина и Нафиона или его аналогов" Патент РФ 166951RU, Международный патент 2010107927/WPO.
- 4. Боева Ж.А., Сергеев В.Г. Полимеризация анилина в присутствии линейной полиакриламидометилпропансульфоновой и полистиролсульфоновой кислоты // Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. Россия. 2006. Сб. статей. № 13. Ч. 1. С. 127-131.
- 5. Боева Ж.А., Солонина Н.А., Сергеев В.Г. Мембранные материалы на основе полианилина и полисульфоновых кислот // Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. Россия. 2007. Сб. статей. № 14. С. 12-15.
- 6. Боева Ж.А., Солонина Н.А., Сергеев В.Г., Пинус И.Ю., Ильина А.А., Стенина И.А., Ярославцев А.Б. Исследование протонной проводимости мембран полианилин-МФ-4СК методом импедансной спектроскопии // Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. Россия. 2007. Сб. статей. № 14. С. 16-19.
- 7. Боева Ж.А., Пышкина О.А., Сергеев В.Г. Мембранные материалы на основе полианилина, Нафиона и его аналогов. // Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. Россия. 2009. Сб. статей. Т. 1. № 16. С. 234-237.
- Боева Ж.А., Пышкина О.А., Сергеев В.Г. Изучение влияния полярности реакционной среды и способа получения мембран ПАНИ:Нафион на их свойства // Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. Россия. 2009. Сб. статей. Т. 1. № 16. С. 237-240.
- 9. Boeva Zh.A., Pyshkina O.A., Sergeyev V.G. Matrix polymerization of aniline in the presence of polysulfonic acids // Scientific Journal of Riga Technical University, Material Science and Applied Chemistry, V. 1. Iss. 21. 2010. P. 104-108.
- 10. Boeva Zh.A., Levon K., Sergeyev V.G. Matrix polymerization of aniline in the presence of the linear poly-(2-acrylamido-1-methylpropanesulfonic) and poly-(1-styrenesulfonic) acid // 1st European school of green chemistry in polymers. Iasi. Romania. 2005. Book of abstracts. P. 87-91.
- Боева Ж.А., Сергеев В.Г. Полимеризация анилина в присутствии линейной полиакриламидометилпропансульфоновой и полистиролсульфоновой кислоты // Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. Россия. 2006. Сб. тезисов докладов. С. 37.
- 12. Боева Ж.А., Сергеев В.Г. Полимеризация анилина в присутствии линейной полиакриламидометилпропансульфоновой и полистиролсульфоновой кислоты // II Санкт-Петербургская конференция молодых ученых «Современные проблемы науки о полимерах». Санкт-Петербург. Россия. 2006. Сб. тезисов докладов. С. 106.

- 13. Боева Ж.А., Пышкина О.А., Сергеев В.Г., Пинус И.Ю., Ильина А.А., Стенина И.А., Ярославцев А.Б. Мембранные материалы на основе полианилина и полисульфоновых кислот, полученные с использованием матричной полимеризации // Российская конференция с международным участием «Ионный перенос в органических и неорганических мембранах». Туапсе. Россия. 2007. Сб. тезисов докладов. С. 52-53.
- 14. Боева Ж.А., Сергеев В.Г. Матричный эффект полимеризации анилина в присутствии линейных полисульфокислот. // IV Всероссийская Каргинская конференция «Наука о полимерах 21-му веку». Москва. Россия. 2007. Сб. тезисов докладов. Т. 2. С. 62.
- 15. Боева Ж.А., Солонина Н.А., Сергеев В.Г., Пинус И.Ю., Ильина А.А., Стенина И.А., Ярославцев А.Б. Мембранные материалы на основе полианилина и полисульфоновых кислот // Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. респ. Марий-Эл, Россия. 2007. Сб. тезисов докладов. № 14. С. 31.
- 16. Boeva Zh.A., Pyshkina O.A., Sergeyev V.G. Matrix polymerization of polyaniline in the presence of polysulfonic acids // 6th International Symposium "Molecular Order and Mobility in Polymer Systems". Saint Petersburg. Russia. 2008. Book of abstracts. P. 171.
- Боева Ж.А., Сергеев В.Г. Изучение влияния состава растворителя на синтез и свойства комплексов ПАНИ:Нафион // Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. Россия. 2009. Сб. тезисов докладов. № 16. С. 26.
- Boeva Zh.A., Pyshkina O.A., Sergeyev V.G. Matrix polymerization of aniline in the presence of polysulfonic acids // International Conference "Baltic Polymer Symposium 2009" Ventspils. Latvia. 2009. Book of Abstracts. P. 8.
- Boeva Zh.A., Pyshkina O.A., Sergeyev V.G. Template polymerization of aniline in the presence of Nafion in the mixed solvents // International Conference "Baltic Polymer Symposium 2010" Palanga. Lithuania. 2010. Book of Abstracts. P. 36.
- Боева Ж.А., Пышкина О.А., Сергеев В.Г. Мембранные материалы на основе полианилина, Нафиона и его аналогов // V Всероссийская каргинская конференция «Полимеры-2010». Москва. Россия. 2010. Сб. тезисов пленарных, устных и приглашённых докладов. С. 204.
- 21. Ж.А. Боева, О.А. Пышкина, В.Г. Сергеев. Синтез и свойства стехиометричных и нестехиометричных электропроводящих интерполимерных комплексов ПАНИ-полианилин. Всероссийская конференция «Структура и динамика молекулярных систем». Яльчик. Россия. 2010. Сб. тезисов докладов. 2010. С. 24.
- 22. Zh. Boeva, O. Pyshkina, D. Godovsky, V. Sergeyev, E. Makhaeva. Membrane materials based on polyaniline and nafion complexes and their memristive behavior // Conducting Polymers. Praha. Czech Republic. Book of abstracts. 2011. P. 117.

Список сокращений:

Z - осново-мольное соотношение [анилин]/[полиэлектролит] в исходной реакиионной смеси

АНИ – анилин, анилин гидрохлорид ДМАА - N,N-диметилацетамид

ДСК - дифференциальная сканирующая калориметрия

ИПЭК – интерполиэлектролитный комплекс

MIIС - 3-меркаптопропансульфокислота

ПА - полианион

ПАМПС - поли-(2-акриламидо-2-метил-1-пропансульфоновая) кислота

ПАНИ – полианилин

ПСА - персульфат аммония

ПСС - поли-(4-стиролсульфоновая) кислота или поли-(4-стиролсульфонат) натрия

ПССМа - поли-(4-стиролсульфонат) натрия

ПССК - поли-(4-стиролсульфоновая) кислота

ПФК - перфторированные поликислоты

ТГА - термогравиметрический анализ

ЦВА – циклическая вольтамперограмма

ЭВ - эквивалентный вес - количество грамм полимера, приходящееся на 1 моль сульфогрупп

Подписано в печать 22.49 20.11года. Заказ № 20. Формат 60х90/₁₆. Усл. печ. л. 1,45°. Тираж 15°О экз. Отпечатано на ризографе в отделе оперативной печати и информации Химического факультета МГУ.